Generalization of 2011 IMO Problem 6

by TelvCohl, Jul 14, 2017, 11:52 PM

Notation : Given a $ \triangle ABC, $ a point $ P $ $ \in $ $ \odot (ABC) $ and a line $ \tau, $ let $ \triangle A_{\tau}B_{\tau}C_{\tau} $ be the triangle determined by the reflection of $ \tau $ in $ BC, $ $ CA, $ $ AB, $ resp. and $ P^{-1} $ be the point lying on $ \odot (ABC) $ such that the Steiner line of $ P^{-1} $ WRT $ \triangle ABC $ passes through $ P. $

Property : Given a $ \triangle ABC $ and a line $ \ell $ such that $ \ell $ $ \cap $ $ \odot (ABC) $ $ \neq $ $ \varnothing . $ Then $ \angle (\ell , \odot(ABC)) $ $ = $ $ \angle (\odot (ABC), \odot (A_{\ell}B_{\ell}C_{\ell})). $

Proof :

Lemma 1 : Given a $ \triangle ABC, $ a point $ T $ $ \in $ $ \odot (ABC) $ and a line $ \ell $ passing through $ T. $ Then $ T^{-1} $ $ \in $ $ \odot (A_{\ell}B_{\ell}C_{\ell}). $

Proof : Let $ H $ be the orthocenter of $ \triangle ABC $ and $ X,Y,Z $ be the reflection of $ T $ in $ BC, $ $ CA, $ $ AB, $ respectively, then $ H,X,Y,Z $ lie on the Steiner line $ \mathbf{S}_T $ of $ T $ WRT $ \triangle ABC. $ From symmetry we get $ \measuredangle A_{\ell}YT^{-1} $ $ = $ $ \measuredangle (HT, \ell) $ $ = $ $ \measuredangle A_{\ell}ZT^{-1}, $ so $ T^{-1} $ $ \in $ $ \odot (A_{\ell}YZ). $ Similarly, $ T^{-1} $ lies on $ \odot (B_{\ell}ZX), $ $ \odot(C_{\ell}XY), $ so $ T^{-1} $ is the Miquel point of the complete quadrilateral $ \triangle A_{\ell}B_{\ell}C_{\ell} $ $ \cup $ $ \mathbf{S}_T $ $ \Longrightarrow $ $ T^{-1} $ $ \in $ $ \odot (A_{\ell}B_{\ell}C_{\ell}). $ $ \qquad \blacksquare $

Corollary 1 (Generalization of 2011 IMO Problem 6) : Given a $ \triangle ABC $ and a line $ \ell. $ Let $ U,V $ be the intersection of $ \ell $ with $ \odot (ABC). $ Then $ \odot (ABC) $ $ \cap $ $ \odot (A_{\ell}B_{\ell}C_{\ell}) $ $ = $ $ \{ U^{-1}, V^{-1} \}. $

Corollary 2 (2011 IMO Problem 6) : Given a $ \triangle ABC $ and a point $ T $ $ \in $ $ \odot (ABC). $ Let $ \ell $ be the tangent of $ \odot (ABC) $ at $ T. $ Then $ \odot (ABC) $ and $ \odot (A_{\ell}B_{\ell}C_{\ell}) $ are tangent to each other at $ T^{-1}. $

Lemma 2 (well-known) : Given a $ \triangle ABC $ and a line $ \ell. $ Then the incenter of $ \triangle A_{\ell}B_{\ell}C_{\ell} $ is the pole of the Simson line of $ \triangle ABC $ with the direction $ \parallel $ $ \ell. $

Proof : Let $ E,F $ be the intersection of $ \ell $ with $ CA, $ $ AB, $ resp. and $ Y,Z $ be the projection of $ A_{\ell} $ on $ CA, $ $ AB, $ respectively. Clearly, $ A $ is the incenter or excenter of $ \triangle A_{\ell}EF, $ so $ AA_{\ell} $ passes through the incenter of $ \triangle A_{\ell}B_{\ell}C_{\ell}. $ Note that $ YZ $ is the $ A_{\ell} $ -midline of $ \triangle A_{\ell}EF, $ so $ AA_{\ell} $ passes through the pole of the Simson line of $ \triangle ABC $ with the direction $ \parallel $ $ \ell. $ $ \qquad \blacksquare $

Back to the main problem :

Let $ T $ be one of the intersection of $ \ell $ with $ \odot (ABC) $ and $ \varrho $ be the tangent of $ \odot (ABC) $ at $ T $ and $ T_A, T_B, T_C $ be the reflection of $ T $ in $ BC, $ $ CA, $ $ AB, $ respectively. From Lemma 1 we get $ T^{-1} $ lies on $ \odot (A_{\ell}B_{\ell}C_{\ell}), $ $ \odot (A_{\varrho}B_{\varrho}C_{\varrho}). $ Furthermore, by Corollary 2 we know $ \odot (ABC), \odot (A_{\varrho}B_{\varrho}C_{\varrho}) $ are tangent to each other at $ T^{-1}, $ so $$ \angle (\odot(ABC), \odot(A_{\ell}B_{\ell}C_{\ell})) = \angle (\odot(A_{\varrho}B_{\varrho}C_{\varrho}), \odot(A_{\ell}B_{\ell}C_{\ell})) \ . \qquad \qquad (\star) $$
From the proof of Lemma 1 we get $  \left\{\begin{array}{cc} \triangle T^{-1}T_CT_B \stackrel{+}{\sim} \triangle T^{-1}B_{\ell}C_{\ell} \stackrel{+}{\sim} \triangle T^{-1}B_{\varrho}C_{\varrho} \\\\ \triangle T^{-1}T_AT_C \stackrel{+}{\sim} \triangle T^{-1}C_{\ell}A_{\ell} \stackrel{+}{\sim} \triangle T^{-1}C_{\varrho}A_{\varrho} \\\\ \triangle T^{-1}T_BT_A \stackrel{+}{\sim} \triangle T^{-1}A_{\ell}B_{\ell} \stackrel{+}{\sim} \triangle T^{-1}A_{\varrho}B_{\varrho}  \end{array}\right\| \Longrightarrow $ $ T^{-1} $ is center of the spiral similarity of $ \triangle A_{\ell}B_{\ell}C_{\ell}, $ $ \triangle A_{\varrho}B_{\varrho}C_{\varrho}. $ Let $ I_{\ell}, I_{\varrho} $ be the incenter of $ \triangle A_{\ell}B_{\ell}C_{\ell}, $ $ \triangle A_{\varrho}B_{\varrho}C_{\varrho}, $ respectively, then combining $ (\star) $ and Lemma 2 we conclude that $$ \angle (\ell, \odot (ABC)) = \angle (\ell, \varrho) = \angle (T^{-1}I_{\varrho}, T^{-1}I_{\ell}) = \angle (\odot (A_{\varrho}B_{\varrho}C_{\varrho}), \odot(A_{\ell}B_{\ell}C_{\ell})) \stackrel{(\star)}{=} \angle (\odot (ABC), \odot(A_{\ell}B_{\ell}C_{\ell})) \ . \qquad \qquad \blacksquare $$

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Interesting!
The last step could also done with $U^{-1}OO' \sim OWU, $ where $ O',W $ the circumcenter of $A_lB_lC_l, UVH.$
I have also another shorter solution without using lemma 1,2 :-D
This post has been edited 1 time. Last edited by TelvCohl, Dec 31, 2022, 4:36 AM
Reason: LaTEX

by duanby, Dec 29, 2022, 9:09 PM

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54238
  • Total comments: 5
Search Blog
a