A Problem with some Nice Lemma

by TelvCohl, Aug 9, 2016, 10:20 PM

Problem

Problem : Given a $ \triangle ABC $ with circumcenter $ O. $ Let $ P, $ $ Q $ be the isogonal conjugate WRT $ \triangle ABC $ and let $ M $ be the midpoint of $ PQ. $ Let $ G_P, $ $ G_Q $ be the centroid of the pedal triangle of $ P, $ $ Q $ WRT $ \triangle ABC, $ respectively and let $ N $ be the midpoint of $ G_PG_Q. $ Prove that if $ PQ $ is parallel to $ G_PG_Q, $ then $ O $ lies on $ MN. $

Preliminaries

Lemma 1 : Given a $ \triangle ABC $ and the points $ E $ $ \in $ $ CA, $ $ F $ $ \in $ $ AB. $ Let $ M, $ $ N $ be the intersection of $ EF, $ $ \odot (ABC) $ and let $ P, $ $ Q, $ $ R, $ $ S $ be the midpoint of $ BE, $ $ CF, $ $ EF, $ $ MN, $ respectively. Then $ P, $ $ Q, $ $ R, $ $ S $ are concyclic.

Proof : Let $ O $ be the circumcenter of $ \triangle ABC $ and let $ A^* $ be the antipode of $ A $ in $ \odot (O). $ Let $ H $ be the orthocenter of $ \triangle AEF $ and let $ J $ be the midpoint of $ A^*H. $ From $ OJ $ $ \parallel $ $ AH $ we get $ OJ $ $ \perp $ $ EF, $ so $ O, $ $ J, $ $ S $ are collinear. On the other hand, notice $ PJ $ $ \parallel $ $ A^*B $ $ \parallel $ $ EH $ and $ PR $ $ \parallel $ $ AB $ we get $ \angle JPR $ $ = $ $ 90^{\circ}, $ so $ J, $ $ P, $ $ R, $ $ S $ are concyclic. Similarly, we can prove $ Q $ lies on this circle, so we conclude that $ P, $ $ Q, $ $ R, $ $ S $ are concyclic. $  \qquad \blacksquare $

Lemma 2 : Given a $ \triangle ABC $ and a point $ P. $ Let $ \triangle DEF $ be the cevian triangle of $ P $ WRT $ \triangle ABC $ and let $ \omega $ be the pedal circle of $ P $ WRT $ \triangle DEF. $ Then the orthotransversal of $ P $ WRT $ \triangle ABC $ is the polar of $ P $ WRT $ \omega. $

Proof : Let $ \triangle XYZ $ be the pedal triangle of $ P $ WRT $ \triangle DEF $ and let the perpendicular from $ P $ to $ AP $ cuts $ BC, $ $ FD, $ $ DE $ at $ A_1, $ $ U, $ $ V, $ respectively. From symmetry, it suffices to prove $ A_1 $ lies on the polar of $ P $ WRT $ \odot (XYZ). $ Obviously, $ D, $ $ P, $ $ Y, $ $ Z $ lie on the circle with diameter $ DP, $ so from $ UV $ $ \perp $ $ DP $ we get $ UV, $ $ YZ $ are antiparallel WRT $ \angle EDF, $ hence $ U, $ $ V, $ $ Y, $ $ Z $ are concyclic. Let $ J $ $ \equiv $ $ UV $ $ \cap $ $ YZ. $ Since $ {JP}^2 $ $ = $ $ JY $ $ \cdot $ $ JZ $ $ = $ $ JU $ $ \cdot $ $ JV, $ so combining $ (A_1,P;U,V) $ $ = $ $ -1 $ we get $ J $ is the midpoint of $ A_1P $ and $ J $ lies on the radical axis of $ \odot (XYZ) $ and the degenerate circle $ P, $ hence we conclude that $ A_1 $ lies on the polar of $ P $ WRT $ \odot (XYZ). $ $  \qquad \blacksquare $

Lemma 3 : Given a $ \triangle ABC $ and a point $ P. $ Let $ \Omega $ be the pedal circle of $ P $ WRT $ \triangle ABC. $ Then the trilinear polar of $ P $ WRT $ \triangle ABC, $ the orthotransversal of $ P $ WRT $ \triangle ABC $ and the polar of $ P $ WRT $ \Omega $ are concurrent.

Proof : Let $ \triangle DEF $ be the anticevian triangle of $ P $ WRT $ \triangle ABC $ and let $ B_1 $ $ \equiv $ $ CA $ $ \cap $ $ FD, $ $ C_1 $ $ \equiv $ $ AB $ $ \cap $ $ DE. $ Let the perpendicular from $ P $ to $ BP $ cuts $ CA, $ $ FD $ at $ Y_1, $ $ E_1, $ respectively and let the perpendicular from $ P $ to $ CP $ cuts $ AB, $ $ DE $ at $ Z_1, $ $ F_1, $ respectively. By Lemma 2 $ \Longrightarrow $ $ E_1F_1 $ is the polar of $ P $ WRT $ \Omega, $ so from Desargues's theorem ($ \triangle B_1E_1Y_1, $ $ \triangle C_1F_1Z_1 $) we conclude that the trilinear polar $ B_1C_1 $ of $ P $ WRT $ \triangle ABC, $ the orthotransversal $ Y_1Z_1 $ of $ P $ WRT $ \triangle ABC, $ polar $ E_1F_1 $ of $ P $ WRT $ \Omega $ are concurrent. $  \qquad \blacksquare $

Corollary 4 : Given a $ \triangle ABC $ and a point $ P $ $ \in $ $ \odot (ABC). $ Then the trilinear polar of $ P $ WRT $ \triangle ABC, $ the orthotransversal of $ P $ WRT $ \triangle ABC $ and the Steiner line of $ P $ WRT $ \triangle ABC $ are concurrent.

Lemma 5 : Given a $ \triangle ABC $ and a point $ P $ $ \in $ $ \odot (ABC). $ Then the intersection $ Q $ of the Steiner line of $ P $ WRT $ \triangle ABC $ and the orthotransversal of $ P $ WRT $ \triangle ABC $ lies on the Jerabek hyperbola of $ \triangle ABC. $

Proof : Let the perpendicular from $ P $ to $ BP $ cuts $ CA, $ $ \odot (ABC) $ at $ E, $ $ B^*, $ respectively and let the perpendicular from $ P $ to $ CP $ cuts $ AB, $ $ \odot (ABC) $ at $ F, $ $ C^*, $ respectively. From Pascal's theorem ($ABB^*PC^*C $) we get $ EF $ passes through the circumcenter $ O $ of $ \triangle ABC. $ Let $ H $ be the orthocenter of $ \triangle ABC $ and let $ T $ $ \equiv $ $ AH $ $ \cap $ $ \odot (O). $ Let $ L $ be the reflection of $ P $ in $ BC. $ Since $ H, $ $ T $ are symmetry WRT $ BC, $ so $ BC, $ $ PT $ and the Steiner line $ HL $ of $ P $ WRT $ \triangle ABC $ are concurrent at $ U. $ From Pascal's theorem ($ ATPC^*CB $) $ \Longrightarrow $ $ F, $ $ U, $ $ V $ $ \equiv $ $ AH $ $ \cap $ $ CC^* $ are collinear, so by Pascal's theorem ($ AHQOCB $) we conclude that $ H, $ $ O, $ $ Q $ lie on a circumconic of $ \triangle ABC. $ i.e. $ Q $ lies on the Jerabek hyperbola of $ \triangle ABC. $ $  \qquad \blacksquare $

Corollary 6 (Corollary 4 $ + $ Lemma 5) : Given a $ \triangle ABC $ and a point $ P $ $ \in $ $ \odot (ABC). $ Let $ \mathcal{O}_P, $ $ \mathcal{S}_P, $ $ \mathcal{T}_P $ be the orthotransversal of $ P $ WRT $ \triangle ABC, $ the Steiner line of $P $ WRT $ \triangle ABC, $ the trilinear polar of $ P $ WRT $ \triangle ABC, $ respectively. Then $ \mathcal{S}_P $ $ \parallel $ $ \mathcal{T}_P $ $ \Longleftrightarrow $ $ \mathcal{T}_P $ $ \parallel $ $ \mathcal{O}_P $ $ \Longleftrightarrow $ $ \mathcal{O}_P $ $ \parallel $ $ \mathcal{S}_P $ $ \Longleftrightarrow $ one of $ \mathcal{O}_P, $ $ \mathcal{S}_P, $ $ \mathcal{T}_P $ is parallel to one of the asymptote of the Jerabek hyperbola of $ \triangle ABC. $

Lemma 7 : Given a $ \triangle ABC $ and a point $ P. $ Let $ Q $ be the isogonal conjugate of $ P $ WRT $ \triangle ABC $ and let $ \triangle Q_aQ_bQ_c $ be the pedal triangle of $ Q $ WRT $ \triangle ABC. $ Then the line passing through $ Q $ and the centroid $ G_Q $ of $ \triangle Q_aQ_bQ_c $ is perpendicular to the trilinear polar of $ P $ WRT $ \triangle ABC. $

Proof : Let $ D, $ $ E, $ $ F $ be the second intersection of $ Q_aG_Q, $ $ Q_bG_Q, $ $ Q_cG_Q $ with $ \odot (Q_aQ_bQ_c), $ respectively. Let $ P_A, $ $ P_B, $ $ P_C $ be the intersection of the trilinear polar of $ P $ WRT $ \triangle ABC $ with $ BC, $ $ CA, $ $ AB, $ respectively. Clearly, $ AP, $ $ BP, $ $ CP $ is perpendicular to $ Q_bQ_c, $ $ Q_cQ_a, $ $ Q_aQ_b, $ respectively, so from $ P(P_A,A;B,C) $ $ = $ $ -1 $ $ = $ $ (Q_aG_Q, Q_bQ_c; Q_cQ_a, Q_aQ_b) $ we get $ PP_A $ $ \perp $ $ Q_aG_Q, $ hence $ P_A $ is the antipode of $ Q $ in $ \odot (DQQ_a). $ Similarly, we can prove $ P_B, $ $ P_C $ is the antipode of $ Q $ in $ \odot (EQQ_b), $ $ \odot (FQQ_c), $ respectively. From $ Q_aG_Q $ $ \cdot $ $ G_QD $ $ = $ $ Q_bG_Q $ $ \cdot $ $ G_QE $ $ = $ $ Q_cG_Q $ $ \cdot $ $ G_QF $ $ \Longrightarrow $ $ \odot (DQQ_a), $ $ \odot (EQQ_b), $ $ \odot (FQQ_c) $ are coaxial with common radical axis $ QG_Q, $ so we conclude that $ QG_Q $ passes through the projection of $ Q $ on the trilinear polar of $ P $ WRT $ \triangle ABC $ $ \Longrightarrow $ $ QG_Q $ is perpendicular to the trilinear polar of $ P $ WRT $ \triangle ABC. $ $  \qquad \blacksquare $

Lemma 8 : Given a $ \triangle ABC, $ a fixed point $ M $ and a fixed angle $ \theta. $ Let $ P, $ $ P^* $ be the isogonal conjugate WRT $ \triangle ABC $ and let $ \tau_P^* $ be the trilinear polar of $ P^* $ WRT $ \triangle ABC. $ Then $ \measuredangle (\tau_P^*, MP) $ $ = $ $ \theta $ $ \Longrightarrow $ $ P $ lies on a fixed conic $ \Gamma_{(M,\theta)} $ passing through $ M $ and the symmedian point $ K $ of $ \triangle ABC. $

Proof : Actually, this lemma simplified follows from the construction of $ P $ (for the given point $ M $ and angle $ \theta $). Let $ \ell $ be a line passing through $ M $ and let $ \ell^* $ be the line passing through $ M $ such that $ \measuredangle (\ell^*, \ell) $ $ = $ $ \theta. $ If $ P $ is the point on $ \ell $ such that $ \measuredangle (\tau_P^*, MP) $ $ = $ $ \theta, $ then $ \tau_P^* $ $ \parallel $ $ \ell^* $ $ \Longrightarrow $ $ \tau_P^*, $ $ \ell^* $ and the trilinear polar of the centroid $ G $ of $ \triangle ABC $ WRT $ \triangle ABC $ are concurrent, hence the trilinear pole $ Q^* $ of $ \ell^* $ WRT $ \triangle ABC $ lies on the circumconic of $ \triangle ABC $ passing through $ G, $ $ P^* $ $ \Longrightarrow $ $ KP $ passes through the isogonal conjugate $ Q $ of $ Q^* $ WRT $ \triangle ABC. $ Conversely, if $ KQ $ cuts $ \ell $ at $ P, $ then $ \tau_P^* $ is parallel to $ \ell^*. $

Since the trilinear pole of the pencil with center $ M $ lies on the circumconic $ \mathcal{C} $ of $ \triangle ABC $ with perspector $ M, $ so $ Q $ varies on a line (isogonal conjugate of $ \mathcal{C} $ WRT $ \triangle ABC $) when $ \ell $ varies around $ M. $ Since the intersection of $ \ell^*, $ $ AQ^* $ with $ BC $ are harmonic conjugate WRT $ B, $ $ C, $ so pencil $ \ell^* $ $ \mapsto $ pencil $ AQ^* $ is a homography when $ \ell $ varies around $ M. $ On the other hand, it's obvious that pencil $ \ell $ $ \mapsto $ pencil $ \ell^* $ and pencil $ AQ^* $ $ \mapsto $ pencil $ AQ $ are homography when $ \ell $ varies around $ M, $ so pencil $ \ell $ $ \mapsto $ pencil $ AQ $ is a homography $ \Longrightarrow $ pencil $ \ell $ $ \mapsto $ pencil $ KQ $ is a homography when $ \ell $ varies around $ M, $ hence the intersection $ P $ of $ \ell, $ $ KQ $ lies on a fixed conic passing through $ M, $ $ K. $ $  \qquad \blacksquare $

Corollary 9 (Corollary 6 $ + $ Lemma 8) : Given a $ \triangle ABC $ and a point $ M. $ Let $ \Gamma_{(M, 90^{\circ})} $ be the conic defined at Lemma 8. Then $ \Gamma_{(M, 90^{\circ})} $ and the Jerabek hyperbola of $ \triangle ABC $ are homothetic.

Corollary 9.1 : Let $ H $ be the orthocenter of $ \triangle ABC. $ Then $ \Gamma_{(H, 90^{\circ})} $ is the Jerabek hyperbola of $ \triangle ABC. $

Corollary 9.2 : Let $ O $ be the circumcenter of $ \triangle ABC. $ Then $ \Gamma_{(O, 90^{\circ})} $ passes through the incenter and the excenter of $ \triangle ABC. $

Lemma 10 : Given a $ \triangle ABC $ and the points $ D_1, $ $ D_2 $ $ \in $ $ BC, $ $ E_1, $ $ E_2 $ $ \in $ $ CA, $ $ F_1, $ $ F_2 $ $ \in $ $ AB. $ Let $ G_1, $ $ G_2 $ be the centroid of $ \triangle D_1E_1F_1, $ $ \triangle D_2E_2F_2, $ respectively. Let $ P $ be the point such that $$ \text{dist}(P,BC) : \text{dist}(P,CA) : \text{dist}(P,AB) = \frac{1}{D_1D_2} : \frac{1}{E_1E_2} : \frac{1}{F_1F_2}. $$Then $ G_1G_2 $ is parallel to the trilinear polar $ \tau_P $ of $ P $ WRT $ \triangle ABC. $

Proof : First, we prove the following lemma.

Lemma 10.1 : Given a $ \triangle ABC $ and the points $ E $ $ \in $ $ CA, $ $ F $ $ \in $ $ AB. $ Let $ P $ be the point such that $$ \text{dist}(P,BC) : \text{dist}(P,CA) : \text{dist}(P,AB) = \frac{1}{BC} : \frac{1}{CE} : \frac{1}{FB}. $$Then $ EF $ is parallel to the trilinear polar $ \varsigma_P $ of $ P $ WRT $ \triangle ABC. $

Proof : Let $ Y, $ $ Z $ be the intersection of $ \varsigma_P $ with $ CA, $ $ AB, $ respectively. From $ [\triangle PCB] $ $ = $ $ [\triangle PBF] $ $ \Longrightarrow $ $ BP $ passes through the midpoint of $ CF, $ so $ (BC,BF;BP,CF) $ $ = $ $ -1 $ $ = $ $ B(C,F;P,Y) $ $ \Longrightarrow $ $ CF $ $ \parallel $ $ BY. $ Similarly, we can prove $ BE $ $ \parallel $ $ CZ, $ so from little Pappus's theorem we conclude that $ EF $ $ \parallel $ $ YZ $ $ \equiv $ $ \varsigma_P . $ $  \qquad \square $

Back to the main proof :

Let $ TD_1, $ $ TD_2 $ be the parallel from $ D_1, $ $ D_2 $ to $ AB, $ $ AC, $ respectively. Let $ E $ $ \in $ $ TD_2 $ be the point such that $ EE_2 $ $ \parallel $ $ D_2E_1 $ and let $ F $ $ \in $ $ TD_1 $ be the point such that $ FF_1 $ $ \parallel $ $ D_1F_2. $ Since $ E_1G_1 $ passes through the midpoint $ U $ of $ F_1D_1, $ $ FF_2, $ so combining $ \tfrac{G_1U}{E_1G_1} $ $ = $ $ \tfrac{1}{2} $ we get $ G_1 $ is the centroid of $ \triangle FE_1F_2, $ hence $ FG_1 $ passes through the midpoint $ V $ of $ E_1F_2 $ and $ \tfrac{G_1V}{FG_1} $ $ = $ $ \tfrac{1}{2}. $ Similarly, we can prove $ V $ lies on $ EG_2 $ and $ \tfrac{G_2V}{EG_2} $ $ = $ $ \tfrac{1}{2}, $ so we get $ EF $ $ \parallel $ $ G_1G_2. $ Let $ P^* $ be the point such that $ \triangle ABC $ $ \cup $ $ P $ $ \sim $ $ \triangle TD_1D_2 $ $ \cup $ $ P^*. $ By Lemma 10.1 $ \Longrightarrow $ $ EF $ is parallel to the trilinear polar $ \tau_P^* $ of $ P^* $ WRT $ \triangle TD_1D_2, $ so we conclude that $ G_1G_2 $ $ \parallel $ $ \tau_P^* $ $ \Longrightarrow $ $ G_1G_2 $ $ \parallel $ $ \tau_P. $ $  \qquad \blacksquare $

Corollary 11 : Given a $ \triangle ABC $ and two points $ P, $ $ Q. $ Let $ \triangle P_aP_bP_c, $ $ \triangle Q_aQ_bQ_c $ be the pedal triangle of $ P, $ $ Q $ WRT $ \triangle ABC, $ respectively. Let $ J $ $ \in $ $ \odot (ABC) $ be the point such that the Steiner line of $ J $ WRT $ \triangle ABC $ is parallel to $ PQ. $ Then the line connecting the centroid of $ \triangle P_aP_bP_c, $ $ \triangle Q_aQ_bQ_c $ is parallel to the trilinear polar of $ J $ WRT $ \triangle ABC. $

Lemma 12 : Let $ I, $ $ I_a, $ $ I_b, $ $ I_c $ be the incenter, A-excenter, B-excenter, C-excenter of $ \triangle ABC, $ respectively. Let $ (P,Q), $ $ (R,S) $ be the isogonal conjugate WRT $ \triangle ABC $ such that $ PQ $ $ \parallel $ $ RS $ and let $ M, $ $ N $ be the midpoint of $ PQ, $ $ RS, $ respectively. Then $ I, $ $ I_a, $ $ I_b, $ $ I_c, $ $ M, $ $ N $ lie on a conic (rectangular hyperbola).

Proof : First, we prove the following lemma.

Lemma 12.1 : Given a $ \triangle ABC $ and the points $ E $ $ \in $ $ CA, $ $ F $ $ \in $ $ AB. $ Let $ Y $ be the isotomic conjugate of $ E $ WRT $ A, $ $ C $ and let $ Y_0 $ be the anticomplement of $ Y $ WRT $ \triangle ABC. $ Let $ Z $ be the isotomic conjugate of $ F $ WRT $ A, $ $ B $ and let $ Z_0 $ be the anticomplement of $ Z $ WRT $ \triangle ABC. $ Let $ \mathcal{P} $ be the parabola tangent to $ BC, $ $ CA, $ $ AB, $ $ EF $ and let $ T $ be the tangency point of $ \mathcal{P}, $ $ EF. $ Then $ T, $ $ Y_0, $ $ Z_0 $ are collinear.

Proof : Let $ \triangle A_0B_0C_0 $ be the antimedial triangle of $ \triangle ABC $ and let $ O_0 $ be the circumcenter of $ \triangle A_0B_0C_0. $ Let $ M $ be the Miquel point of the complete quadrilateral $ \mathcal{Q} $ with the sides $ BC, $ $ CA, $ $ AB, $ $ EF $ (focus of $ \mathcal{P} $) and let $ M^* $ be the reflection of $ M $ in $ EF. $ Since $ M^*T $ passes through the tangency point of $ \mathcal{P} $ and the line at infinity, so $ M^*T $ is parallel to the Newton line of $ \mathcal{Q} $ $ \Longrightarrow $ $ M^*T $ $ \parallel $ $ YZ $ $ \parallel $ $ Y_0Z_0, $ hence it suffices to prove $ M^* $ $ \in $ $ Y_0Z_0. $

Let $ M_1 $ be the projection of $ O_0 $ on $ Y_0Z_0. $ Since $ M $ is the center of the spiral similarity of $ BF $ $ \mapsto $ $ CE, $ so $ \tfrac{MB}{MC} $ $ = $ $ \tfrac{BF}{CE} $ $ = $ $ \tfrac{AZ}{AY}, $ hence combining $ \measuredangle BMC $ $ = $ $ \measuredangle ZAY $ we get $ \triangle AYZ $ $ \stackrel{+}{\sim} $ $ \triangle MCB. $ On the other hand, since $ E, $ $ F $ is the midpoint of $ B_0Y_0, $ $ C_0Z_0, $ respectively, so from Lemma 1 we get $ \odot (EFM_1) $ passes through the midpoint $ M_0 $ of $ Y_0Z_0, $ hence note that $ M_0F $ $ \parallel $ $ AC $ we get $ \measuredangle M_1EF $ $ = $ $ \measuredangle M_1M_0F $ $ = $ $ \measuredangle ZYA $ $ = $ $ \measuredangle FEM. $ Similarly, we can prove $ \measuredangle M_1FE $ $ = $ $ \measuredangle EFM, $ so we conclude that $ M, $ $ M_1 $ are symmetry WRT $ EF $ $ \Longrightarrow $ $ M_1 $ $ \equiv $ $ M^*. $ $  \qquad \square $

Lemma 12.2 : Given a fixed conic $ \mathcal{C} $ and two fixed lines $ \ell, $ $ \ell_1 $ such that $ \ell_1 $ is tangent to $ \mathcal{C} $ at $ T. $ Let $ V $ be a fixed point on $ \ell_1 $ and let $ R $ be a point varies on $ \ell. $ Let $ S $ $ \equiv $ $ TR $ $ \cap $ $ \mathcal{C} $ and let the tangent of $ \mathcal{C} $ at $ S $ cuts $ VR $ at $ K. $ Then $ K $ lies on a fixed conic when $ R $ varies on $ \ell. $ Furthermore, if $ \ell $ cuts $ \ell_1 $ at $ J, $ then this conic passes through $ V $ and the harmonic conjugate $ U $ of $ V $ WRT $ J, $ $ T. $

Proof : Let $ \tau_R $ be the polar of $ R $ WRT $ \mathcal{C} $ and let $ L $ $ \in $ $ \tau_R $ be the pole of $ \ell $ WRT $ \mathcal{C}. $ Since pencil $ \tau_R $ $ \mapsto $ pencil $ VR $ is a homography when $ R $ varies on $ \ell, $ so $ P $ $ \equiv $ $ \tau_R $ $ \cap $ $ VR $ lies on a fixed conic $ \mathcal{H}_P $ passing through $ L, $ $ V. $ Since $ P $ coincide with $ T $ when $ R $ coincide with $ J, $ so $ T $ $ \in $ $ \mathcal{H}_P. $ Let $ Q $ $ \equiv $ $ \tau_R $ $ \cap $ $ ST, $ $ X $ $ \equiv $ $ \ell $ $ \cap $ $ PT. $ Since $ X(P,R;K,V) $ $ = $ $ (P,R;K,V) $ $ = $ $ (Q,R;S,T) $ $ = $ $ -1 $ $ = $ $ X(T,J;U,V), $ so $ K, $ $ U, $ $ X $ are collinear. Since the intersection of $ TP, $ $ UX $ lies on a fixed line $ \ell, $ so pencil $ TP $ $ \mapsto $ pencil $ UX $ is a homography $ \Longrightarrow $ pencil $ VP $ $ \mapsto $ pencil $ UX $ is a homography, hence we conclude that $ K $ $ \equiv $ $ VP $ $ \cap $ $ UX $ lies on a fixed conic passing through $ U, $ $ V. $ $  \qquad \square $

Back to the main proof :

We prove the following equivalence property of Lemma 12.

Given a $ \triangle ABC $ and a point $ L $ at infinity. Let $ J, $ $ K $ be the isogonal conjugate WRT $ \triangle ABC $ such that $ L $ $ \in $ $ JK $ and let $ \mathcal{C} $ be the inconic of $ \triangle ABC $ with focus $ J, $ $ K. $ Then the center $ T $ of $ \mathcal{C} $ lies on a fixed conic.

Let $ V $ $ \equiv $ $ JK $ $ \cap $ $ BC $ and let the reflection of $ BC $ in $ JK $ cuts $ CA, $ $ AB $ at $ E, $ $ F, $ respectively. Let $ A^*, $ $ B^*, $ $ C^*, $ $ E^*, $ $ F^* $ be the midpoint of $ BC, $ $ CA, $ $ AB, $ $ BE, $ $ CF, $ respectively. Clearly, $ EF $ is tangent to $ \mathcal{C}, $ so $ T $ lies on the Newton line $ E^*F^* $ of the complete quadrilateral formed by $ \triangle ABC, $ $ EF. $ Let $ \mathcal{P} $ be the parabola tangent to $ B^*C^*, $ $ C^*A^*, $ $ A^*B^*, $ $ E^*F^*. $ By Lemma 12.1 $ \Longrightarrow $ the intersection $ G $ of $ EF, $ $ E^*F^* $ is the tangency point of $ E^*F^*, $ $ \mathcal{P}, $ so note that $ GV $ $ \equiv $ $ EF $ is parallel to the Newton line of the complete quadrilateral formed by $ \triangle A^*B^*C^*, $ $ E^*F^* $ we get $ GV $ passes through the tangency point of $ \mathcal{P} $ with the line $ \mathcal{L}_{\infty} $ at infinity which is fixed when $ J, $ $ K $ varies. Finally, by Lemma 12.2 ($ \ell $ $ \equiv $ $ BC, $ $ \ell_1 $ $ \equiv $ $ \mathcal{L}_{\infty} $) we conclude that $ T $ lies on a fixed conic passing through the points at infinity with the direction $ \parallel JK, $ $ \perp JK, $ respectively. $  \qquad \blacksquare $

Main Proof

Proof of the original problem : Let $ O $ be the circumcenter of $ \triangle ABC. $ Clearly, $ N $ is the centroid of the pedal triangle of $ M $ WRT $ \triangle ABC, $ so if $ M^* $ is the isogonal conjugate of $ M $ WRT $ \triangle ABC, $ then from Lemma 7 we get $ MN $ is perpendicular to the trilinear polar $ \tau_M^* $ of $ M^* $ WRT $ \triangle ABC. $ On the other hand, from Corollary 6 and Corollary 11 we know if $ PQ $ $ \parallel $ $ G_PG_Q, $ then they are parallel to one of the asymptote of the Jerabek hyperbola of $ \triangle ABC, $ so combining Corollary 9.2 and Lemma 12 we get $ OM $ is perpendicular to $ \tau_M^*, $ hence we conclude that $ M, $ $ N, $ $ O $ are collinear. $  \qquad \blacksquare $

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 55023
  • Total comments: 5
Search Blog
a