Generalization of Parry Reflection Point

by TelvCohl, Sep 14, 2017, 4:42 AM

Preliminaries

Lemma : Given a $ \triangle ABC $ and a point $ P. $ Then $ P $ lies on the Pivotal Isogonal cubic with pivot $ U $ if and only if $ P, $ the isogonal conjugate $ V $ of $ U $ WRT $ \triangle ABC, $ the cevian quotient $ \left( U/P \right) $ WRT $ \triangle ABC $ are collinear.

Proof : Let $ Q $ be the isogonal conjugate of $ P $ WRT $ \triangle ABC, $ $ \mathcal{C}_U $ be the circumconic of $ \triangle ABC $ passing through $ P, $ $ U, $ and $ \mathcal{C}_V $ be the circumconic of $ \triangle ABC $ passing through $ P, $ $ V. $ It's well-known that the tangent of $ \mathcal{C}_U $ at $ P $ passes through $ \left( U/P \right) , $ so $ P, V, \left( U/P \right) $ are collinear if and only if $ (P,A;B,C)_{\mathcal{C}_U} $ $ = $ $ (V,A;B,C)_{\mathcal{C}_V}. $ Let $ K $ be the intersection of $ BC $ with $ QU, $ then notice $ \mathcal{C}_V $ is the isogonal conjugate of $ QU $ WRT $ \triangle ABC $ we know $ AK $ and the tangent of $ \mathcal{C}_V $ at $ A $ are isogonal conjugate WRT $ \angle A, $ so $ (V,A;B,C)_{\mathcal{C}_V} $ $ = $ $ A(U,K;C,B) $ $ = $ $ U(A,Q;C,B) $ $ = $ $ U(Q,A;B,C), $ hence we conclude that $$ U \in PQ \Longleftrightarrow (V,A;B,C)_{\mathcal{C}_V} = U(P,A;B,C) = (P,A;B,C)_{\mathcal{C}_U} \Longleftrightarrow \left( U/P \right) \in PV \ . \qquad \blacksquare $$
Corollary : Given a $ \triangle ABC $ and a point $ U. $ Then a point $ P $ lies on the Pivotal Isogonal cubic with pivot $ U $ if and only if the cevian quotient $ \left( U/P \right) $ of $ P $ and $ U $ WRT $ \triangle ABC $ lies on it.

Proof : Let $ P^*, $ $ U^*, $ $ \left( U/P \right)^* $ be the isogonal conjugate of $ P, $ $ U, $ $ \left( U/P \right) $ WRT $ \triangle ABC, $ respectively. Then $$ P, P^*, U \text{ are collinear }. \stackrel{\text{Lemma}}{\Longleftrightarrow} P, U^*, \left( U/P \right) \text{ are collinear }. \stackrel{\text{Lemma}}{\Longleftrightarrow} U, \left( U/P \right) , \left( U/P \right)^* \text{ are collinear }. \qquad \blacksquare $$
Main result

Notation

Given a $ \triangle ABC, $ a point $ P $ and a point $ W $ lying on the line $ \mathcal{L}_{\infty} $ at infinity. Let $ \triangle DEF $ be the cevian triangle of $ W $ WRT $ \triangle ABC $ and let $ \triangle XYZ $ be the circlecevian triangle of $ P $ WRT $ \triangle ABC. $

Property 1 : Let $ Q $ be the isogonal conjugate of $ P $ WRT $ \triangle ABC. $ Then $ DX, EY, FZ $ are concurrent $ \Longleftrightarrow $ $ W \in PQ. $

Proof :

($ \Longrightarrow $) Clearly, $ A $ is the center of the spiral similarity of $ BY \mapsto ZC, $ so $ \measuredangle EAY $ $ = $ $ \measuredangle ZAF $ and $ AY \cdot AZ $ $ = $ $ AB \cdot AC $ $ = $ $ AE \cdot AF $ $ \Longrightarrow $ $ \triangle AEY $ $ \stackrel{+}{\sim} $ $ \triangle AZF, $ hence $ \measuredangle (EY, FZ) $ is independent of the position of $ W $ $ \Longrightarrow $ the intersection of $ EY, FZ $ lies on a fixed circle $ \mathbf{C}_X $ passing through $ Y, Z $ when $ W $ varies on $ \mathcal{L}_{\infty}. $ Similarly, the intersection of $ (FZ, DX), $ $ (DX, EY) $ lie on a fixed circle $ \mathbf{C}_Y, $ $ \mathbf{C}_Z, $ respectively. Let $ \bar{W} $ be the second intersection of $ \mathbf{C}_Y, $ $ \mathbf{C}_Z. $ From $ \measuredangle Y\bar{W}Z $ $ = $ $ \measuredangle Y\bar{W}X $ $ + $ $ \measuredangle X\bar{W}Z $ $ = $ $ \measuredangle ACB $ $ + $ $ \measuredangle BPA $ $ + $ $ \measuredangle CBA $ $ + $ $ \measuredangle APC $ $ = $ $ \measuredangle CAB $ $ + $ $ \measuredangle BPC $ we get $ \bar{W} \in \mathbf{C}_X, $ so $ \mathbf{C}_X, \mathbf{C}_Y, \mathbf{C}_Z $ are concurrent at $\bar{W}. $ This establish the uniqueness of the position of $ W $ such that $ DX, EY, FZ $ are concurrent.

($ \Longleftarrow $) Let $ \triangle P_aP_bP_c, \triangle Q_aQ_bQ_c $ be the cevian triangle of $ P, Q $ WRT $ \triangle ABC, $ respectively and let $ \triangle P_AP_BP_C $ be the circumcevian triangle of $ P $ WRT $ \triangle ABC. $ It is well-known that $ BC, QP_A $ and the parallel from $ P $ to $ AQ $ are concurrent at $ R, $ so combining $ AP_a \cdot P_AP_a $ $ = $ $ PP_a \cdot XP_a $ we get $ \tfrac{XP_a}{P_AP_a} $ $ = $ $ \tfrac{AP_a}{PP_a} $ $ = $ $ \tfrac{Q_aP_a}{RP_a}, $ hence $ \triangle PRP_A $ and $ \triangle AQ_aX $ are homothetic with center $ P_a. $ Let $ PQ $ cuts $ BC,  CA,  AB $ at $ A^*, $ $ B^*, $ $ C^*, $ respectively and let $ J $ $ \equiv $ $ DX \cap QP_A, $ $ K $ $ \equiv $ $ AD \cap P_AA^*. $ Obviously, $ P_AA^* $ and $ DX $ are parallel and $ \triangle KP_AQ, \triangle DXQ_a $ are homothetic with center $ A, $ so $ QK $ $ \parallel $ $ BC $ $ \Longrightarrow $ $ \tfrac{QP_A}{RP_A} $ $ = $ $ \tfrac{QK}{A^*R} $ $ = $ $ \tfrac{A^*D}{A^*R} $ $ = $ $ \tfrac{JP_A}{RP_A}, $ hence $ J $ is the reflection of $ Q $ in $ P_A $ $ \Longrightarrow $ $ DX $ is the image of $ P_AA^* $ under the homothety $ \mathbf{H}^{Q}_{2} . $ Similarly, $ EY, $ $ FZ $ is the image of $ P_BB^*, $ $ P_CC^*, $ under the homothety $ \mathbf{H}^{Q}_{2}, $ respectively. From Pascal's theorem we get $ P_AA^*, P_BB^*P_CC^* $ are concurrent at $ S \in \odot (ABC), $ so we conclude that $ DX,EY,FZ $ are concurrent at the image $ T $ of $ S $ under the homothety $ \mathbf{H}^{Q}_{2}. $ $ \qquad \blacksquare $

Property 2 : Let $ V $ be the second intersection of $ QT $ with $ \odot (ABC). $ Then the Steiner line of $ V $ WRT $ \triangle ABC $ is perpendicular to $ PQ. $

Proof : Let $ \triangle Q_AQ_BQ_C $ be the circumcevian triangle of $ Q $ WRT $ \triangle ABC. $ Notice $ \triangle ASQ_A $ $ \stackrel{-}{\sim} $ $ \triangle A^*P_aP_A, $ so from $ \tfrac{AQ}{Q_AQ} $ $ = $ $ \tfrac{PP_a}{P_AP_a} $ we know $ \triangle QSQ_A $ $ \stackrel{-}{\sim} $ $ \triangle A^*PP_A $ $ \Longrightarrow $ $ \measuredangle (AV,AQ) $ $ = $ $ \measuredangle QSQ_A $ $ = $ $ \measuredangle P_APA^* $ $ = $ $ \measuredangle (AP,PQ), $ hence the isogonal conjugate of $ AV $ WRT $ \angle A $ is parallel to $ PQ. $ i.e. the Steiner line of $ V $ WRT $ \triangle ABC $ is perpendicular to $ PQ. $ $ \qquad \blacksquare $

Corollary 1 : $ T $ lies on $ \odot (ADQ), $ $ \odot (BEQ), $ $ \odot (CFQ). $

Proof : Since $ AD $ and $ AV $ are isogonal conjugate WRT $ \angle A, $ so $ \measuredangle DAQ $ $ = $ $ \measuredangle PAV $ $ = $ $ \measuredangle P_ASV $ $ = $ $ \measuredangle DTQ $ $ \Longrightarrow $ $ A,D,Q,T $ are concyclic. $ \qquad \blacksquare $

Property 3 : Let $ I, I_a, I_b, I_c $ be the incenter, A-excenter, B-excenter, C-excenter of $ \triangle ABC, $ respectively. Then $ T $ lies on $ \odot (II_aX), $ $ \odot (II_bY), $ $ \odot (II_cZ). $

Proof : Let $ M $ be the midpoint of arc $ BC $ in $ \odot (ABC) $ and let $ N $ be image of $ M $ under the homothety $ \mathbf{H}^{Q}_{2}. $ Since $ AB \cdot AC $ $ = $ $ AQ \cdot AX $ $ = $ $ AI \cdot AI_a, $ so note that $ \measuredangle (AM, AX) = \measuredangle MSP_A = \measuredangle NTX $ we get $$ \left\{\begin{array}{cc} \triangle AIX \stackrel{+}{\sim} \triangle AQI_a \Longrightarrow \measuredangle (AI_a,AX) = \measuredangle (QI_a,IX) = \measuredangle NIX \\\\ \triangle AIQ \stackrel{+}{\sim} \triangle AXI_a  \Longrightarrow \measuredangle (AI,AX) = \measuredangle (IQ,XI_a) = \measuredangle NI_aX \end{array}\right\| \Longrightarrow T \in \odot (II_aX) \ .  \qquad \blacksquare $$
Corollary 2 : $ T $ lies on $ \odot (XI_bI_c), $ $ \odot (YI_cI_a), $ $ \odot (ZI_aI_b). $

Proof : By the same reason, as in the proof of Property 3, we get

$$ \left\{\begin{array}{cc} \triangle BIQ \stackrel{+}{\sim} \triangle BYI_b, \ \triangle BQI_b \stackrel{+}{\sim} \triangle BIY \Longrightarrow \measuredangle I_bYI = \measuredangle I_bYB + \measuredangle BYI = \measuredangle QIB + \measuredangle BI_bQ = \measuredangle IQI_b \\\\ \triangle CIQ \stackrel{+}{\sim} \triangle CZI_c, \ \triangle CQI_c \stackrel{+}{\sim} \triangle CIZ \Longrightarrow \measuredangle IZI_c = \measuredangle IZC + \measuredangle CZI_c = \measuredangle QI_cC + \measuredangle CIQ = \measuredangle I_cQI \end{array}\right\| \stackrel{\text{Prop. 3}}{\Longrightarrow} \measuredangle I_bTI_c = \measuredangle I_cQI_b \ . $$On the other hand, from $ \triangle AXI_b $ $ \stackrel{+}{\sim} $ $ \triangle AI_cQ, $ $ \triangle AXI_c $ $ \stackrel{+}{\sim} $ $ \triangle AI_bQ $ we get $ \measuredangle I_bXI_c $ $ = $ $ \measuredangle I_bXA $ $ + $ $ \measuredangle AXI_c $ $ = $ $ \measuredangle QI_cA $ $ + $ $ \measuredangle AI_bQ $ $ = $ $ \measuredangle I_cQI_b, $ so $ \measuredangle I_bTI_c $ $ = $ $ \measuredangle I_bXI_c $ $ \Longrightarrow $ $ T \in \odot (XI_bI_c). $ $ \qquad \blacksquare $

Corollary 3 : $ Q $ and $ T $ are antigonal conjugate WRT $ \triangle I_aI_bI_c. $

Corollary 4 : $ Q $ and $ T $ are antigonal conjugate WRT the anticevian triangle $ \triangle Q_a^{-1}Q_b^{-1}Q_c^{-1} $ of $ Q $ WRT $ \triangle ABC. $

Proof : Note that $ I, I_a, I_b, I_c, Q, Q_a^{-1}, Q_b^{-1}, Q_c^{-1} $ lie on a conic (well-known), so $ Q $ and $ T $ are antigonal conjugate WRT $ \triangle Q_a^{-1}Q_b^{-1}Q_c^{-1}. $ $ \qquad \blacksquare $

Property 4 : $ T $ lies on the Pivotal Isogonal Circular Cubic of $ \triangle ABC $ passing through $ P, $ $ Q. $

Proof : Since the reflection of $ Q $ in $ A^* $ lies on $ DX, $ so $ D(A,Q_a;QX,) $ $ = $ $ -1 $ $ \Longrightarrow $ $ Q_a^{-1} \in DX. $ Similarly, $ Q_b^{-1} \in EY, $ $ Q_c^{-1} \in FZ, $ so from the Corollary of Lemma we conclude that $ T, $ the cevian quotient $ \left( U/Q \right) $ of $ Q $ and $ U $ WRT $ \triangle ABC $ where $ U $ is the point at infinity on $ PQ, $ lies on the Pivotal Isogonal Circular Cubic of $ \triangle ABC $ passing through $ P, $ $ Q. $ $ \qquad \blacksquare $
This post has been edited 1 time. Last edited by TelvCohl, Jan 27, 2021, 3:12 PM

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54237
  • Total comments: 5
Search Blog
a