Inequality

by JK1603JK, Apr 2, 2025, 8:27 AM

Prove that 9ab\left(a-b+c\right)+9bc\left(b-c+a\right)+9ca\left(c-a+b\right)\ge \left(a+b+c\right)^{3},\ \ a\ge 0\ge b\ge c: a+b+c\le 0.

geometry

by Tony_stark0094, Apr 2, 2025, 7:04 AM

Consider $\Delta ABC$ let $\omega_1$ and $\omega_2$ be the circles passing through $A,B$ and $A,C$ respectively such that $BC$ is tangent to $\omega_1$ and $\omega_2$ define $R$ to be a point such that it lies on both the circles $\omega_1$ and $\omega_2$ prove that $HR$ and $AR$ are perpendicular.

An inequality

by JK1603JK, Apr 2, 2025, 3:11 AM

Let a,b,c\ge 0: a+b+c=3 then prove \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le \frac{27}{2}\cdot\frac{1}{2ab+2bc+2ca+3}.

geometry incentre config

by Tony_stark0094, Apr 1, 2025, 4:09 PM

In a triangle $\Delta ABC$ $I$ is the incentre and point $F$ is defined such that $F \in AC$ and $F \in \odot BIC$
prove that $AI$ is the perpendicular bisector of $BF$

Inequalities

by sqing, Apr 1, 2025, 2:59 PM

Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=11.$ Prove that
$$a+ab+abc\leq\frac{49}{6}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=10.$ Prove that
$$a+ab+abc\leq\frac{169}{24}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=14.$ Prove that
$$a+ab+abc\leq\frac{63+5\sqrt 5}{6}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=32.$ Prove that
$$a+ab+abc\leq48+\frac{64\sqrt{2}}{3}$$

Geo Mock #4

by Bluesoul, Apr 1, 2025, 7:03 AM

Consider acute triangle $ABC$ with orthocenter $H$. Extend $AH$ to meet $BC$ at $D$. The angle bisector of $\angle{ABH}$ meets the midpoint of $AD$. If $AB=10, BH=6$, compute the area of $\triangle{ABC}$.
L

Geo Mock #3

by Bluesoul, Apr 1, 2025, 7:02 AM

Consider square $ABCD$ with side length of $5$. The point $P$ is selected on the diagonal $AC$ such that $\angle{BPD}=135^{\circ}$. Denote the circumcenters of $\triangle{BPA}, \triangle{APD}$ as $O_1,O_2$. Find the length of $O_1O_2$
L

Geo Mock #2

by Bluesoul, Apr 1, 2025, 6:59 AM

Consider convex quadrilateral $ABCD$ such that $AB=6, BC=10, \angle{ABC}=90^{\circ}$. Denote the midpoints of $AD,CD$ as $M,N$ respectively, compute the area of $\triangle{BMN}$ given the area of $ABCD$ is $50$.
L

Solve the equetion

by yt12, Mar 31, 2025, 8:34 AM

one very nice!

by MihaiT, Mar 31, 2025, 4:43 AM

Given $m_1$ weights, each weighing $k_1$ and another $m_2$ weights with $k_2$ each. Write a algorithm that determines the ways in which a scale can be balanced with a weight $X$ on the left pan, and display the number of possible solutions. (The weights can be placed on both pans and the program starts with the numbers $m_1,k_1,m_2,k_2,X$. What will be displayed after three successive runs: 5,2,5,1,4 | 5,2,5,1,11 | 5,2,5,1,20?

One answer is possible:
a)10;5;0;
b)20;7;0;
c)20;7;1;
d)10;10;0;
e)10;7;0;
f)20;5;0,
Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54252
  • Total comments: 5
Search Blog
a