A Cute Problem about Square OPHQ

by TelvCohl, Aug 15, 2016, 3:02 AM

Problem : Given a $ \triangle ABC $ with circumcenter $ O $ and orthocenter $ H. $ Let $ P, $ $ Q $ be the points such that $ OPHQ $ is a square and let $ P^*, $ $ Q^* $ be the isogonal conjugate of $ P, $ $ Q $ WRT $ \triangle ABC, $ respectively. Prove that (1) $ PQ $ $ \parallel $ $ P^*Q^*. $ (2) $ PQ^*, $ $ P^*Q $ pass through the Euler reflection point $ T $ of $ \triangle ABC. $ (3) $ PP^*, $ $ QQ^* $ pass through the Kosnita point $ K_o $ of $ \triangle ABC. $

Proof : This problem is a nice application of the Properties of Hagge circle. Let the circle $ \odot (Q) $ with center $ Q $ passing through $ O, $ $ H $ cuts $ AH, $ $ BH, $ $ CH $ at $ A_P^*, $ $ B_P^*, $ $ C_P^*, $ respectively. Clearly, $ \odot (Q) $ is the Hagge circle of $ P^* $ WRT $ \triangle ABC, $ so combining $ \measuredangle OQA_P^* $ $ = $ $ 2 \measuredangle (OH, \perp BC) $ $ = $ $ \measuredangle AOT $ we get $ \triangle ABC $ $ \cup $ $ O $ $ \cup $ $ T $ $ \cup $ $ P^* $ $ \stackrel{-}{\sim} $ $ \triangle A_P^*B_P^*C_P^* $ $ \cup $ $ Q $ $ \cup $ $ O $ $ \cup $ $ P^*, $ hence $ \measuredangle OP^*T $ $ = $ $ \measuredangle OP^*Q $ $ \Longrightarrow $ $ T $ lies on $ P^*Q. $ Similarly, we can prove $ T $ lies on $ PQ^*, $ so $ T $ is the intersection of $ PQ^*, $ $ PQ^*. $ On the other hand, it's well-known that the intersection of $ PQ, $ $ P^*Q^* $ is the isogonal conjugate of $ T $ WRT $ \triangle ABC, $ so $ PQ $ $ \parallel $ $ P^*Q^*. $

Let $ K $ $ \equiv $ $ PP^* $ $ \cap $ $ QQ^* $ and let $ M, $ $ N $ be the midpoint of $ P^*Q^*, $ $ PQ, $ respectively. Let $ OT $ cuts the perpendicular bisector of $ P^*Q^* $ at $ U. $ Clearly, $ K, $ $ M, $ $ N, $ $ T $ are collinear and $ \triangle OPQ, $ $ \triangle UQ^*P^* $ are homothetic with center $ T, $ so from $ O(K,T;M,N) $ $ = $ $ -1 $ we know $ OK $ passes through the reflection $ V $ of $ U $ in $ M. $ From $ OQ $ $ \parallel $ $ UP^* $ $ \Longrightarrow $ $ \measuredangle UP^*O $ $ = $ $ \measuredangle QOP^* $ $ = $ $ \measuredangle P^*TO $ $ = $ $ \measuredangle P^*TU, $ so we get $ UO $ $ \cdot $ $ UT $ $ = $ $ {UP^*}^2 $ $ = $ $ UM $ $ \cdot $ $ UV $ $ \Longrightarrow $ $ M, $ $ O, $ $ T, $ $ V $ are concyclic, hence $ \measuredangle OTK $ $ = $ $ \measuredangle OTM $ $ = $ $ \measuredangle OVM $ $ = $ $ \measuredangle KON $ $ \Longrightarrow $ $ OK $ is the tangent of $ \odot (NOT). $ $ \qquad (\dagger) $

Let the circle $ \odot (N) $ with diameter $ OH $ cuts $ AH, $ $ BH, $ $ CH $ at $ A^*, $ $ B^*, $ $ C^*, $ respectively. Clearly, $ \odot (N) $ is the Hagge circle of $ K_o $ WRT $ \triangle ABC, $ so combining $ \measuredangle ONA^* $ $ = $ $ 2\measuredangle (OH, \perp BC) $ $ = $ $ \measuredangle AOT $ we get $ \triangle ABC $ $ \cup $ $ O $ $ \cup $ $ T $ $ \cup $ $ K_o $ $ \stackrel{-}{\sim} $ $ \triangle A^*B^*C^* $ $ \cup $ $ N $ $ \cup $ $ O $ $ \cup $ $ K_o $, hence $ \measuredangle OK_oN $ $ = $ $ \measuredangle OK_oT $ $ \Longrightarrow $ $ K_o, $ $ M, $ $ N, $ $ T $ are collinear. Furthermore, from $ \measuredangle OTK_o $ $ = $ $ \measuredangle K_oON $ we know $ OK_o $ is tangent to $ \odot (NOT) $ at $ O, $ so combining $ (\dagger) $ we conclude that $ K $ coincide with $ K_o. $ i.e. the Kosnita point $ K_o $ of $ \triangle ABC $ lies on $ PP^* $ and $ QQ^*. $ $  \qquad \blacksquare  $

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54631
  • Total comments: 5
Search Blog
a