Property of Darboux cubic related to 2016 USA TSTST

by TelvCohl, Jul 13, 2016, 11:45 AM

Property : Given a $ \triangle ABC $ and a point $ P $ lying on the Darboux cubic of $ \triangle ABC. $ Let $ \triangle A_0B_0C_0 $ be the pedal triangle of $ P $ WRT $ \triangle ABC $ and let $ Q $ be the perspector of $ \triangle ABC, $ $ \triangle A_0B_0C_0. $ Let $ A_1, $ $ A_2 $ be the intersection of $ \odot (A_0B_0C_0), $ $ \odot (BPC) $ and let $ \Gamma_A $ be the circumcircle of $ \triangle AA_1A_2 $ (define $ B_1, $ $ B_2, $ $ C_1, $ $ C_2, $ $ \Gamma_B, $ $ \Gamma_C $ similarly). Then $ Q $ is the radical center of $ \Gamma_A, $ $ \Gamma_B, $ $ \Gamma_C. $

Proof :

Lemma (well-known) : Given a $ \triangle ABC $ and two points $ P, $ $ Q. $ Let $ \triangle DEF $ be the cevian triangle of $ P $ WRT $ \triangle ABC $ and let $ AQ, $ $ BQ, $ $ CQ $ cuts $ EF, $ $ FD, $ $ DE $ at $ X, $ $ Y, $ $ Z, $ respectively. Then $ PX, $ $ BZ, $ $ CY $ are concurrent.

Proof : From Cevian nest theorem we get $ \triangle XYZ $ is the cevian triangle of $ \triangle DEF, $ so notice $ \triangle DEF $ is the cevian triangle of $ A $ WRT $ \triangle PCB $ we conclude that (by Cevian nest theorem) $ PX, $ $ BZ, $ $ CY $ are concurrent.

Back to the main problem :

Let $ AP, $ $ BP, $ $ CP $ cuts $ B_0C_0, $ $ C_0A_0, $ $ A_0B_0 $ at $ P_a, $ $ P_b, $ $ P_c, $ respectively. Clearly, $ P_b $ is the radical center of $ \odot (BP), $ $ \odot (APB) $ and the pedal circle $ \Omega_P $ of $ P $ WRT $ \triangle ABC $ $ \Longrightarrow $ $ P_b $ lies on the radical axis $ C_1C_2 $ of $ \Omega_P, $ $ \odot (APB), $ so if $ CP_b $ cuts $ \Gamma_C $ again at $ Z, $ then $ CP_b $ $ \cdot $ $ ZP_b $ $ = $ $ BP_b $ $ \cdot $ $ PP_b $ $ \Longrightarrow $ $ Z $ $ \in $ $ \odot (BPC). $ Analogously, we can prove $ P_a $ lies on $ B_1B_2, $ $ C_1C_2, $ and $ Y $ $ \equiv $ $ BP_c $ $ \cap $ $ \Gamma_B $ lies on $ \odot (BPC), $ so the radical axis $ \mathcal{R}_a $ of $ \Gamma_B, $ $ \Gamma_C $ passes through $ P_a $ and the intersection of $ BP_c, $ $ CP_b, $ hence from Lemma we conclude that $ Q $ $ \in $ $ \mathcal{R}_a. $ Similarly, we can prove $ Q $ lies on the radical axis of $ \Gamma_C, $ $ \Gamma_A $ and $ \Gamma_A, $ $ \Gamma_B, $ so $ Q $ is the radical center of $ \Gamma_A, $ $ \Gamma_B, $ $ \Gamma_C. $

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54247
  • Total comments: 5
Search Blog
a