Splitting a grid into two rectangles
by liberator, Nov 1, 2014, 11:57 AM
Problem: Into each box of a
square grid, a real number greater than or equal to
and less than or equal to
is inserted. Consider splitting the grid into
non-empty rectangles consisting of boxes of the grid by drawing a line parallel either to the horizontal or the vertical side of the grid. Suppose that for at least one of the resulting rectangles the sum of the numbers in the boxes within the rectangle is less than or equal to
, no matter how the grid is split into
such rectangles. Determine the maximum possible value for the sum of all the
numbers inserted into the boxes.
[Asian Pacific Mathematical Olympiad 2012 Problem 2]
[b]My solution[/b]







[Asian Pacific Mathematical Olympiad 2012 Problem 2]
[b]My solution[/b]
Note that a sum of
may be achieved in the following configuration:
![[asy]
/* APMO 2012 Problem 2, free script by liberator, 1 November 2014 */
unitsize(0.8cm);
defaultpen(fontsize(16pt));
/* Draw objects */
draw(Line((0,0), (0,3), 0.2, 0));
draw(Line((1,0), (1,3), 0.2, 0));
draw(Line((2,0), (2,3), 0.2, 0));
draw(Line((3,0), (3,3), 0.2, 0));
draw(Line((0,0), (3,0), 0, 0.2));
draw(Line((0,1), (3,1), 0, 0.2));
draw(Line((0,2), (3,2), 0, 0.2));
draw(Line((0,3), (3,3), 0, 0.2));
/* Label objects */
label("$0$", (0,0), 1.8*dir(45));
label("$1$", (0,1), 1.8*dir(45));
label("$0$", (0,2), 1.8*dir(45));
label("$1$", (1,0), 1.8*dir(45));
label("$1$", (1,1), 1.8*dir(45));
label("$1$", (1,2), 1.8*dir(45));
label("$0$", (2,0), 1.8*dir(45));
label("$1$", (2,1), 1.8*dir(45));
label("$0$", (2,2), 1.8*dir(45));
label("$\vdots$", (1,0), 1.8*dir(-45));
label("$\cdots$", (3,1), 1.8*dir(45));
[/asy]](//latex.artofproblemsolving.com/2/6/7/267f93f0847bf09829e19827d728b1cbb15db295.png)
where each other square has entry zero. We show that
is the maximum. Suppose that a value of
is attainable.
We work on a general
board. Choose
where
denotes the sum of the entries in column
. Now choose
If
, then we have from definition
which contradicts the problem requirement. Hence
.
Similarly, if
denotes the sum of the entries in row
,
an integer
such that
Considering the value of the entry in column
, row
, we have
Therefore
; in particular, this holds in the case
, as required.

![[asy]
/* APMO 2012 Problem 2, free script by liberator, 1 November 2014 */
unitsize(0.8cm);
defaultpen(fontsize(16pt));
/* Draw objects */
draw(Line((0,0), (0,3), 0.2, 0));
draw(Line((1,0), (1,3), 0.2, 0));
draw(Line((2,0), (2,3), 0.2, 0));
draw(Line((3,0), (3,3), 0.2, 0));
draw(Line((0,0), (3,0), 0, 0.2));
draw(Line((0,1), (3,1), 0, 0.2));
draw(Line((0,2), (3,2), 0, 0.2));
draw(Line((0,3), (3,3), 0, 0.2));
/* Label objects */
label("$0$", (0,0), 1.8*dir(45));
label("$1$", (0,1), 1.8*dir(45));
label("$0$", (0,2), 1.8*dir(45));
label("$1$", (1,0), 1.8*dir(45));
label("$1$", (1,1), 1.8*dir(45));
label("$1$", (1,2), 1.8*dir(45));
label("$0$", (2,0), 1.8*dir(45));
label("$1$", (2,1), 1.8*dir(45));
label("$0$", (2,2), 1.8*dir(45));
label("$\vdots$", (1,0), 1.8*dir(-45));
label("$\cdots$", (3,1), 1.8*dir(45));
[/asy]](http://latex.artofproblemsolving.com/2/6/7/267f93f0847bf09829e19827d728b1cbb15db295.png)
where each other square has entry zero. We show that


We work on a general

![\[\ell = \max_{1 \leq j \leq n} \left \{ j: \sum_{i=1}^{j-1} C_i \leq 1 \right \},\]](http://latex.artofproblemsolving.com/9/e/b/9ebfc2d0de59ce4ac35996de09cf10590a3628cd.png)


![\[ \ell' = \min_{\ell \leq j \leq n} \left \{j: \sum_{i= j+1}^n C_i \leq 1 \right \}.\]](http://latex.artofproblemsolving.com/a/8/3/a834ba7b76acf395fa2505953e8fae0d0d9652ee.png)

![\[\sum_{i=1}^{\ell} C_i > 1, \sum_{i= \ell +1}^n C_i > 1,\]](http://latex.artofproblemsolving.com/1/c/e/1ce4d8a5f86ef3413b93cfe9feaf86a48f780284.png)

Similarly, if




![\[\sum_{i=1}^{m-1} R_i \leq 1, \sum_{i= m+1}^n R_i \leq 1.\]](http://latex.artofproblemsolving.com/f/3/2/f32e4825452e3216406c0cd4eedf035494c1f6f1.png)


![\[1 \geq k- \left (\sum_{i=1}^{\ell-1} C_i + \sum_{i= \ell +1}^n C_i + \sum_{i=1}^{m-1} R_i + \sum_{i= m+1}^n R_i \right ) \geq k - 4.\]](http://latex.artofproblemsolving.com/f/3/9/f39b4917329ffb5393e84e89b54c52d6839fa46f.png)


This post has been edited 1 time. Last edited by liberator, Nov 1, 2014, 11:57 AM