IMO 2015 Problem 3

by liberator, Jul 14, 2015, 2:48 PM

Problem: Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma $ be its cirumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order.

Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other.

Proposed by Ukraine

My solution
This post has been edited 2 times. Last edited by liberator, Jul 14, 2015, 8:58 PM

Comment

2 Comments

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
How do you use Reim's theorem so efficiently, which by the way, is not even modestly complex enough to be called a theorem? How is it insightful? I would love to know as to how it motivates a solution. :)

by anantmudgal09, Feb 10, 2016, 3:25 AM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hmm sorry my reply is so late. :blush:

Essentially, as you've said, Reim's theorem is a very simple result which can often be replaced in a proof by a three-step angle chase. However, what makes it powerful is that every time you have intersecting circles, you know its there somewhere, and its use is often tied in with theorems relating to intersecting circles e.g. Miquel, Mannheim, spiral similarities etc.

by liberator, Feb 18, 2016, 5:45 PM

It's not just good - it's revolutionary!

avatar

liberator
Shouts
Submit
  • whoa....

    by bachkieu, Jan 31, 2025, 1:40 AM

  • hello...

    by ethan2011, Jul 4, 2024, 5:13 PM

  • 2024 shout ftw

    by Shreyasharma, Feb 19, 2024, 10:28 PM

  • time flies

    by Asynchrone, Dec 13, 2023, 9:29 PM

  • first 2023 shout :D

    by gracemoon124, Aug 2, 2023, 4:58 AM

  • offline.................

    by 799786, Dec 27, 2021, 7:08 AM

  • YOU SHALL NOT PASS! - liberator

    by OlympusHero, Aug 16, 2021, 4:10 AM

  • Nice Blog!

    by geometry6, Jul 31, 2021, 1:39 PM

  • First shout out in 2021 :D

    by Aimingformygoal, May 31, 2021, 4:23 PM

  • indeed a pr0 blog :surf:

    by Kanep, Dec 3, 2020, 10:46 PM

  • pr0 blog !!

    by Hamroldt, Dec 2, 2020, 8:32 AM

  • niice bloog!

    by Eliot, Oct 1, 2020, 3:27 PM

  • nice blog :o

    by fukano_2, Aug 8, 2020, 7:49 AM

  • Nice blog :)

    by Feridimo, Mar 31, 2020, 9:29 AM

  • Very nice blog !

    by Kamran011, Oct 31, 2019, 5:48 PM

56 shouts
Tags
About Owner
  • Posts: 95
  • Joined: May 28, 2014
Blog Stats
  • Blog created: Aug 13, 2014
  • Total entries: 46
  • Total visits: 37819
  • Total comments: 43
Search Blog
a