Inspired by A_E_R

by sqing, Apr 13, 2025, 12:18 PM

Let $ a,b,c,d>0 $ and $ a(b^2+c^2)\geq 4bcd.$ Prove that$$ (a^2+b^2+c^2+d^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2})\geq\frac{84}{4}$$Let $ a,b,c,d>0 $ and $ a(b^2+c^2)\geq 3bcd.$ Prove that$$ (a^2+b^2+c^2+d^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2})\geq\frac{625}{36}$$

Inspired by lgx57

by sqing, Apr 13, 2025, 10:16 AM

Interesting inequality

by A_E_R, Apr 13, 2025, 9:41 AM

Let a,b,c,d are positive real numbers, if the following inequality holds ab^2+ac^2>=5bcd. Find the minimum value of explanation: (a^2+b^2+c^2+d^2)(1/a^2+1/b^2+1/c^2+1/d^2)
This post has been edited 2 times. Last edited by A_E_R, an hour ago
Reason: size

Number Theory Chain!

by JetFire008, Apr 7, 2025, 7:14 AM

I will post a question and someone has to answer it. Then they have to post a question and someone else will answer it and so on. We can only post questions related to Number Theory and each problem should be more difficult than the previous. Let's start!

Question 1
This post has been edited 1 time. Last edited by JetFire008, Apr 7, 2025, 7:14 AM

Abelkonkurransen 2025 1b

by Lil_flip38, Mar 20, 2025, 11:07 AM

In Duckville there is a perpetual trophy with the words “Best child of Duckville” engraved on it. Each inhabitant of Duckville has a non-empty list (which never changes) of other inhabitants of Duckville. Whoever receives the trophy
gets to keep it for one day, and then passes it on to someone on their list the next day. Gregers has previously received the trophy. It turns out that each time he does receive it, he is guaranteed to receive it again exactly $2025$ days later (but perhaps earlier, as well). Hedvig received the trophy today. Determine all integers $n>0$ for which we can be absolutely certain that she cannot receive the trophy again in $n$ days, given the above information.

Concurrent lines

by BR1F1SZ, Mar 7, 2025, 8:23 PM

Let $ABCD$ be a trapezoid with parallel sides $AB$ and $CD$, where $BC\neq DA$. A circle passing through $C$ and $D$ intersects $AC, AD, BC, BD$ again at $W, X, Y, Z$ respectively. Prove that $WZ, XY, AB$ are concurrent.
This post has been edited 1 time. Last edited by BR1F1SZ, Mar 7, 2025, 8:35 PM

Arithmetic progression

by BR1F1SZ, Mar 7, 2025, 8:20 PM

Suppose an infinite non-constant arithmetic progression of integers contains $1$ in it. Prove that there are an infinite number of perfect cubes in this progression. (A perfect cube is an integer of the form $k^3$, where $k$ is an integer. For example, $-8$, $0$ and $1$ are perfect cubes.)

IMO Shortlist 2017 Geometry

by liberator, Oct 4, 2018, 9:40 PM

Here are my solutions to some of the geometry problems from this year's IMO Shortlist.

G1. Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

My solution

G3. Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

My solution

G4. In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

My solution

Maximum area of the triangle

by adityaguharoy, Jan 19, 2017, 11:42 AM

If in some triangle $\triangle ABC$ we are given :
$\sqrt{3} \cdot \sin(C)=\frac{2- \sin A}{\cos A}$ and one side length of the triangle equals $2$, then under these conditions find the maximum area of the triangle $ABC$.

Injective arithmetic comparison

by adityaguharoy, Jan 16, 2017, 3:41 AM

Show or refute :
For every injective function $f: \mathbb{N} \to \mathbb{N}$ there are elements $a,b,c$ in an arithmetic progression in the order $a<b<c$ such that $f(a)<f(b)<f(c)$ .

Convex quad

by MithsApprentice, Oct 27, 2005, 7:54 AM

Let $\, ABCD \,$ be a convex quadrilateral such that diagonals $\, AC \,$ and $\, BD \,$ intersect at right angles, and let $\, E \,$ be their intersection. Prove that the reflections of $\, E \,$ across $\, AB, \, BC, \, CD, \, DA \,$ are concyclic.

It's not just good - it's revolutionary!

avatar

liberator
Shouts
Submit
  • whoa....

    by bachkieu, Jan 31, 2025, 1:40 AM

  • hello...

    by ethan2011, Jul 4, 2024, 5:13 PM

  • 2024 shout ftw

    by Shreyasharma, Feb 19, 2024, 10:28 PM

  • time flies

    by Asynchrone, Dec 13, 2023, 9:29 PM

  • first 2023 shout :D

    by gracemoon124, Aug 2, 2023, 4:58 AM

  • offline.................

    by 799786, Dec 27, 2021, 7:08 AM

  • YOU SHALL NOT PASS! - liberator

    by OlympusHero, Aug 16, 2021, 4:10 AM

  • Nice Blog!

    by geometry6, Jul 31, 2021, 1:39 PM

  • First shout out in 2021 :D

    by Aimingformygoal, May 31, 2021, 4:23 PM

  • indeed a pr0 blog :surf:

    by Kanep, Dec 3, 2020, 10:46 PM

  • pr0 blog !!

    by Hamroldt, Dec 2, 2020, 8:32 AM

  • niice bloog!

    by Eliot, Oct 1, 2020, 3:27 PM

  • nice blog :o

    by fukano_2, Aug 8, 2020, 7:49 AM

  • Nice blog :)

    by Feridimo, Mar 31, 2020, 9:29 AM

  • Very nice blog !

    by Kamran011, Oct 31, 2019, 5:48 PM

56 shouts
Tags
About Owner
  • Posts: 95
  • Joined: May 28, 2014
Blog Stats
  • Blog created: Aug 13, 2014
  • Total entries: 46
  • Total visits: 38031
  • Total comments: 43
Search Blog
a