IMO Shortlist 2017 Geometry
by liberator, Oct 4, 2018, 9:40 PM
Here are my solutions to some of the geometry problems from this year's IMO Shortlist.
G1. Let
be a convex pentagon such that
,
, and
. Prove that the perpendicular line from
to
and the line segments
and
are concurrent.
My solution![[asy]
size(6cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair X=dir(270), W=dir(215), Y=dir(10), V=W*X/Y, Z=X/W*Y, A=2*V*W/(V+W), B=2*W*X/(W+X), C=2*X*Y/(X+Y), D=2*Y*Z/(Y+Z), E=2*Z*V/(Z+V), P=extension(E,A,C,D), Q=extension(A,B,D,E), T=foot(E,B,C);
D(E--A--B--C--D--E--T);
DPA(E--P--D^^A--Q--E,pathpen+dashed);
D(unitcircle,heavygreen);
D(rightanglemark(E,T,C,5));
DPA(anglemark(B,A,E)^^anglemark(D,C,B),red);
DPA(anglemark(E,D,C)^^anglemark(C,B,A),purple);
D("A",A,SW);
D("B",B,SW);
D("C",C,SE);
D("D",D,ENE);
D("E",E,N);
D("P",P,NE);
D("Q",Q,WNW);
D("T",T);
[/asy]](//latex.artofproblemsolving.com/c/c/9/cc9c07b357e53df571029bb533dfe85be2b84966.png)
Let
; then
is a kite, so has an incircle. Similarly, if
, then
has an incircle. Hence
has an incircle
.
Let
be the foot from
to
. Now
bisects
, so it follows that
touches
at
. We're done by Brianchon's theorem.
G3. Let
be the circumcenter of an acute triangle
. Line
intersects the altitudes of
through
and
at
and
, respectively. The altitudes meet at
. Prove that the circumcenter of triangle
lies on a median of triangle
.
My solution![[asy]
unitsize(3cm);
pointpen = black; pathpen = rgb(0.4,0.6,0.8); pointfontpen = fontsize(10);
pair A=dir(125), B=dir(210), C=dir(-30), E=foot(B,C,A), F=foot(C,A,B), O=origin, P=extension(B,E,O,A), Q=extension(C,F,O,A), H=A+B+C, M=(B+C)/2, X=foot(H,A,M), G=extension(E,F,B,C);
D(A--B--C--cycle);
DPA(Q--A^^B--E^^C--F);
D(A--M,red+dashed);
DPA(circumcircle(P,Q,H)^^A--H,heavygreen);
DPA(X--G--E^^G--B,dashed+pathpen);
D("A",A,dir(A));
D("B",B,dir(B));
D("C",C,dir(C));
D("E",E,NE);
D("F",F,NW);
D("H",H,SE);
D("O",O,dir(0));
D("P",P);
D("Q",Q,NE);
D("X",X,dir(0));
D(G); D(M);
[/asy]](//latex.artofproblemsolving.com/5/1/e/51ee6eed1502f3913ff1dcf03722b90c1b30032b.png)
Let
be the foot from
to
; it's known that
. Now
, so
is tangent to
. Hence
is the polar of
in
, and the result follows.
G4. In triangle
, let
be the excircle opposite to
. Let
and
be the points where
is tangent to
, and
, respectively. The circle
intersects line
at
and
. Let
be the midpoint of
. Prove that the circle
is tangent to
.
My solution![[asy]
size(10cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair A=dir(130), B=dir(210), C=dir(-30), I_A=2*dir(-90)-incenter(A,B,C), D=foot(I_A,B,C), E=foot(I_A,A,C), F=foot(I_A,A,B);
path w=D(circumcircle(A,E,F),red), l=(100*B-99*C)--(100*C-99*B);
pair P=IP(l, w), Q=OP(l, w), R=extension(B,C,E,F), N=foot(I_A, A, D), M=(A+D)/2, T=2*N-D;
DPA(E--A--F--R^^P--R--T--A);
D(CP(I_A,D),heavygreen);
D(circumcircle(M,P,Q),purple+dashed);
D("A",A,dir(A));
D("B",B,SW);
D("C",C,NE);
D("D",D,SSW);
D("E",E,dir(0));
D("F",F,SW);
D("P",P,W);
D("Q",Q,NE);
D("R",R,dir(0));
D("T",T,SE);
D("M",M,SSW);
D("N",N,W);
D("I_A",I_A);
[/asy]](//latex.artofproblemsolving.com/f/6/e/f6e50d745586db5e9317c53d85eff9941f7e1ea4.png)
Let
meet
again at
, and let
be the pole of
in
. Let
be the midpoint of
; as
,
lies on
.
Now
, so
is cyclic. Hence
, and the result follows.
G1. Let








My solution
![[asy]
size(6cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair X=dir(270), W=dir(215), Y=dir(10), V=W*X/Y, Z=X/W*Y, A=2*V*W/(V+W), B=2*W*X/(W+X), C=2*X*Y/(X+Y), D=2*Y*Z/(Y+Z), E=2*Z*V/(Z+V), P=extension(E,A,C,D), Q=extension(A,B,D,E), T=foot(E,B,C);
D(E--A--B--C--D--E--T);
DPA(E--P--D^^A--Q--E,pathpen+dashed);
D(unitcircle,heavygreen);
D(rightanglemark(E,T,C,5));
DPA(anglemark(B,A,E)^^anglemark(D,C,B),red);
DPA(anglemark(E,D,C)^^anglemark(C,B,A),purple);
D("A",A,SW);
D("B",B,SW);
D("C",C,SE);
D("D",D,ENE);
D("E",E,N);
D("P",P,NE);
D("Q",Q,WNW);
D("T",T);
[/asy]](http://latex.artofproblemsolving.com/c/c/9/cc9c07b357e53df571029bb533dfe85be2b84966.png)
Let






Let








G3. Let











My solution
![[asy]
unitsize(3cm);
pointpen = black; pathpen = rgb(0.4,0.6,0.8); pointfontpen = fontsize(10);
pair A=dir(125), B=dir(210), C=dir(-30), E=foot(B,C,A), F=foot(C,A,B), O=origin, P=extension(B,E,O,A), Q=extension(C,F,O,A), H=A+B+C, M=(B+C)/2, X=foot(H,A,M), G=extension(E,F,B,C);
D(A--B--C--cycle);
DPA(Q--A^^B--E^^C--F);
D(A--M,red+dashed);
DPA(circumcircle(P,Q,H)^^A--H,heavygreen);
DPA(X--G--E^^G--B,dashed+pathpen);
D("A",A,dir(A));
D("B",B,dir(B));
D("C",C,dir(C));
D("E",E,NE);
D("F",F,NW);
D("H",H,SE);
D("O",O,dir(0));
D("P",P);
D("Q",Q,NE);
D("X",X,dir(0));
D(G); D(M);
[/asy]](http://latex.artofproblemsolving.com/5/1/e/51ee6eed1502f3913ff1dcf03722b90c1b30032b.png)
Let










G4. In triangle
















My solution
![[asy]
size(10cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair A=dir(130), B=dir(210), C=dir(-30), I_A=2*dir(-90)-incenter(A,B,C), D=foot(I_A,B,C), E=foot(I_A,A,C), F=foot(I_A,A,B);
path w=D(circumcircle(A,E,F),red), l=(100*B-99*C)--(100*C-99*B);
pair P=IP(l, w), Q=OP(l, w), R=extension(B,C,E,F), N=foot(I_A, A, D), M=(A+D)/2, T=2*N-D;
DPA(E--A--F--R^^P--R--T--A);
D(CP(I_A,D),heavygreen);
D(circumcircle(M,P,Q),purple+dashed);
D("A",A,dir(A));
D("B",B,SW);
D("C",C,NE);
D("D",D,SSW);
D("E",E,dir(0));
D("F",F,SW);
D("P",P,W);
D("Q",Q,NE);
D("R",R,dir(0));
D("T",T,SE);
D("M",M,SSW);
D("N",N,W);
D("I_A",I_A);
[/asy]](http://latex.artofproblemsolving.com/f/6/e/f6e50d745586db5e9317c53d85eff9941f7e1ea4.png)
Let











Now


