Proving collinearities with the Newton-Gauss line
by liberator, Apr 11, 2017, 10:29 PM
So apparently I'm being peer pressured into posting
Here is the desired blog entry, a whole 364 days after the last! I hope that this satisfies your requests/demands or whatever you want to call it.
This is just to illustrate a nice little trick that I've used to solve several (read: three) problems.
To show that three points are collinear, we can use the converse of the Newton-Gauss line property, by proving that circles on appropriate diameters are coaxal (orthocentres often come in handy here), which can give us the fourth side of a complete quadrilateral. This is perhaps best demonstrated by three examples:
Problem 1: Let
be a triangle. Let
and
be the circumcevian triangles of points
and
respectively. Prove that
and the triangle determined by lines
are in perspective.
[Jerabek's theorem]
![[asy]
unitsize(2cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
path carc(pair A, pair B, pair C, real d=0, bool dir) {
pair O=circumcenter(A,B,C);
return arc(O,circumradius(A,B,C),degrees(A-O)+d,degrees(C-O)-d,dir);
}
pair A=dir(110), B=dir(200), C=dir(-20), Q=(-0.1,-0.05), P_a=-A, P_b=-B, P_c=-C, Q_a=IP(unitcircle,L(A,Q,-0.1,10)), Q_b=IP(unitcircle,L(B,Q,-0.1,10)), Q_c=IP(unitcircle,L(C,Q,-0.1,10)), X=extension(P_a,Q_a,B,C), Y=extension(P_b,Q_b,C,A), Z=extension(P_c,Q_c,A,B);
D(X--B--A--C);
D(unitcircle,heavygreen);
D(carc(A,foot(A,B,C),X,CCW),red);
D(X--Q_a--A--foot(A,B,C));
D("A",A,NW);
D("B",B,SW);
D("C",C,SE);
D("Q",Q,E);
D("Q_a",Q_a);
D("P_a",P_a,N);
D("X",X,E);
D("H",A+B+C,SSE);
[/asy]](//latex.artofproblemsolving.com/f/f/5/ff53bd829f6adc02545920abcdf07f47fb85d7c2.png)
Solution. Let
, and define
analogously. Take a homography fixing
and sending
to the centre. It is easy to see that the circles on diameters
are coaxal, with common radical axis
. Then by the converse of the Newton-Gauss line, it follows that
are collinear.
[Sorry for the lack of complete diagrams for the next two problems. Some of the points are very far apart, meaning that the diagrams would probably not be very clear anyway]
Problem 2: A circle
with centre
intersects the sides
of triangle
at
and
,
and
,
and
respectively. Let
be the circumcentre of triangle
,
the circumcentre of triangle
,
the circumcentre of triangle
. Prove that
,
and
are concurrent.
[UK Training for RMM 2017]
![[asy]
unitsize(2cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair P=origin, A_1=dir(230), A_2=dir(-50), B_1=dir(-20), B_2=dir(95), C_1=dir(120), C_2=dir(185), A=extension(B_1,B_2,C_1,C_2), B=extension(C_1,C_2,A_1,A_2), C=extension(A_1,A_2,B_1,B_2), Ap=circumcenter(A_1,A_2,P), Bp=circumcenter(B_1,B_2,P), Cp=circumcenter(C_1,C_2,P), X=2/(conj(IP(A--Ap,unitcircle))+conj(OP(A--Ap,unitcircle)));
D(A--B--C--cycle);
DPA(A--Ap^^B--Bp^^C--Cp);
D(unitcircle,heavygreen);
D("A",A,NW);
D("B",B,SW);
D("C",C,SE);
D("A'",Ap,E);
D("B'",Bp);
D("C'",Cp,SW);
D("P",P,E);
[/asy]](//latex.artofproblemsolving.com/1/0/4/1040b46ebc7f74aadcc798bafb674c1c7977e396.png)
Solution. Let the polar of
in
meet the polar of
at
, and define
analogously. It suffices to show that
are collinear. Let
be the triangle formed by the polars of
in
, which is homothetic to
with centre
. Consider the circles on diameters
. Easily,
and the orthocentre of
lie on a common radical axis of these circles. Thus the midpoints of
are collinear, so the result follows by the converse of the Newton-Gauss line.
Problem 3: A circle
with centre
intersects the sides
of triangle
at
and
,
and
,
and
respectively. Let the lines tangent to
at
and
meet at
and define similarly
and
. Prove that the lines
,
, and
are concurrent.
[Silouanas Brazitikos, UK IMO Training and Selection Camp April 2017]
![[asy]
unitsize(2cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair P=origin, A_1=dir(230), A_2=dir(-50), B_1=dir(-20), B_2=dir(95), C_1=dir(120), C_2=dir(185), A=extension(B_1,B_2,C_1,C_2), B=extension(C_1,C_2,A_1,A_2), C=extension(A_1,A_2,B_1,B_2), Ap=2/(conj(A_1)+conj(A_2)), Bp=2/(conj(B_1)+conj(B_2)), Cp=2/(conj(C_1)+conj(C_2)), X=extension(B,C,tangent(A,P,1),tangent(A,P,1,2));
D(A--B--C--cycle);
DPA(A--Ap^^B--Bp^^C--Cp);
D(unitcircle,heavygreen);
D("A",A,NW);
D("B",B,SW);
D("C",C,SE);
D("A'",Ap);
D("B'",Bp,NE);
D("C'",Cp,NW);
D("P",P,E);
[/asy]](//latex.artofproblemsolving.com/7/5/8/7589f309fd84c2af1fcad5b83f786616906562dc.png)
Solution. Let the polar of
in
meet
at
, and define
analogously. It suffices to show that
are collinear. Consider the circles on diameters
. Easily,
and the orthocentre of
lie on a common radical axis of these circles. Thus the midpoints of
are collinear, so the result follows by the converse of the Newton-Gauss line. 

This is just to illustrate a nice little trick that I've used to solve several (read: three) problems.
To show that three points are collinear, we can use the converse of the Newton-Gauss line property, by proving that circles on appropriate diameters are coaxal (orthocentres often come in handy here), which can give us the fourth side of a complete quadrilateral. This is perhaps best demonstrated by three examples:
Problem 1: Let







[Jerabek's theorem]
![[asy]
unitsize(2cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
path carc(pair A, pair B, pair C, real d=0, bool dir) {
pair O=circumcenter(A,B,C);
return arc(O,circumradius(A,B,C),degrees(A-O)+d,degrees(C-O)-d,dir);
}
pair A=dir(110), B=dir(200), C=dir(-20), Q=(-0.1,-0.05), P_a=-A, P_b=-B, P_c=-C, Q_a=IP(unitcircle,L(A,Q,-0.1,10)), Q_b=IP(unitcircle,L(B,Q,-0.1,10)), Q_c=IP(unitcircle,L(C,Q,-0.1,10)), X=extension(P_a,Q_a,B,C), Y=extension(P_b,Q_b,C,A), Z=extension(P_c,Q_c,A,B);
D(X--B--A--C);
D(unitcircle,heavygreen);
D(carc(A,foot(A,B,C),X,CCW),red);
D(X--Q_a--A--foot(A,B,C));
D("A",A,NW);
D("B",B,SW);
D("C",C,SE);
D("Q",Q,E);
D("Q_a",Q_a);
D("P_a",P_a,N);
D("X",X,E);
D("H",A+B+C,SSE);
[/asy]](http://latex.artofproblemsolving.com/f/f/5/ff53bd829f6adc02545920abcdf07f47fb85d7c2.png)
Solution. Let








[Sorry for the lack of complete diagrams for the next two problems. Some of the points are very far apart, meaning that the diagrams would probably not be very clear anyway]
Problem 2: A circle



















[UK Training for RMM 2017]
![[asy]
unitsize(2cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair P=origin, A_1=dir(230), A_2=dir(-50), B_1=dir(-20), B_2=dir(95), C_1=dir(120), C_2=dir(185), A=extension(B_1,B_2,C_1,C_2), B=extension(C_1,C_2,A_1,A_2), C=extension(A_1,A_2,B_1,B_2), Ap=circumcenter(A_1,A_2,P), Bp=circumcenter(B_1,B_2,P), Cp=circumcenter(C_1,C_2,P), X=2/(conj(IP(A--Ap,unitcircle))+conj(OP(A--Ap,unitcircle)));
D(A--B--C--cycle);
DPA(A--Ap^^B--Bp^^C--Cp);
D(unitcircle,heavygreen);
D("A",A,NW);
D("B",B,SW);
D("C",C,SE);
D("A'",Ap,E);
D("B'",Bp);
D("C'",Cp,SW);
D("P",P,E);
[/asy]](http://latex.artofproblemsolving.com/1/0/4/1040b46ebc7f74aadcc798bafb674c1c7977e396.png)
Solution. Let the polar of
















Problem 3: A circle



















[Silouanas Brazitikos, UK IMO Training and Selection Camp April 2017]
![[asy]
unitsize(2cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8); pointfontpen=fontsize(10);
pair P=origin, A_1=dir(230), A_2=dir(-50), B_1=dir(-20), B_2=dir(95), C_1=dir(120), C_2=dir(185), A=extension(B_1,B_2,C_1,C_2), B=extension(C_1,C_2,A_1,A_2), C=extension(A_1,A_2,B_1,B_2), Ap=2/(conj(A_1)+conj(A_2)), Bp=2/(conj(B_1)+conj(B_2)), Cp=2/(conj(C_1)+conj(C_2)), X=extension(B,C,tangent(A,P,1),tangent(A,P,1,2));
D(A--B--C--cycle);
DPA(A--Ap^^B--Bp^^C--Cp);
D(unitcircle,heavygreen);
D("A",A,NW);
D("B",B,SW);
D("C",C,SE);
D("A'",Ap);
D("B'",Bp,NE);
D("C'",Cp,NW);
D("P",P,E);
[/asy]](http://latex.artofproblemsolving.com/7/5/8/7589f309fd84c2af1fcad5b83f786616906562dc.png)
Solution. Let the polar of










