Inspired by old results

by sqing, Apr 10, 2025, 8:28 AM

Let $a ,b,c \geq 0 $ and $a+b+c=1$. Prove that
$$\frac{1}{2}\leq \frac{ \left(1-a^{2}\right)^2+2\left(1-b^{2}\right) \left(1-c^{2}\right) }{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\leq 1$$$$1 \leq \frac{\left(1-a^{2}\right)^{2}+2\left(1-b^{2}\right) +\left(1-c^{2}\right)^{2}}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\leq \frac{3}{2}$$
This post has been edited 1 time. Last edited by sqing, an hour ago

Find the range of a symmetric function

by DinDean, Apr 10, 2025, 6:38 AM

For $a,b,c\in[0,1]$, assume $a+b+c=1$, compute the range of
\[f(a,b,c)=(1-a^2)^2+(1-b^2)^2+(1-c^2)^2.\]

Inspired by Ruji2018252

by sqing, Apr 10, 2025, 2:00 AM

Let $ a,b,c $ be reals such that $ a^2+b^2+c^2-2a-4b-4c=7. $ Prove that
$$ -4\leq 2a+b+2c\leq 20$$$$5-4\sqrt 3\leq a+b+c\leq 5+4\sqrt 3$$$$ 11-4\sqrt {14}\leq a+2b+3c\leq 11+4\sqrt {14}$$

Linear recurrence fits with factorial finitely often

by Assassino9931, Apr 9, 2025, 10:25 PM

Let $k\geq 3$ be an integer. The sequence $(a_n)_{n\geq 1}$ is defined via $a_1 = 1$, $a_2 = k$ and
\[ a_{n+2} = ka_{n+1} + a_n \]for any positive integer $n$. Prove that there are finitely many pairs $(m, \ell)$ of positive integers such that $a_m = \ell!$.

Prove that x1=x2=....=x2025

by Rohit-2006, Apr 9, 2025, 5:22 AM

The real numbers $x_1,x_2,\cdots,x_{2025}$ satisfy,
$$x_1+x_2=2\bar{x_1}, x_2+x_3=2\bar{x_2},\cdots, x_{2025}+x_1=2\bar{x_{2025}}$$Where {$\bar{x_1},\cdots,\bar{x_{2025}}$} is a permutation of $x_1,x_2,\cdots,x_{2025}$. Prove that $x_1=x_2=\cdots=x_{2025}$
This post has been edited 1 time. Last edited by Rohit-2006, Yesterday at 5:23 AM

Interesting inequalities

by sqing, Apr 9, 2025, 3:06 AM

Let $ a,b $ be real numbers . Prove that
$$-\frac{11+8\sqrt 2}{7}\leq \frac{ab+a+b-1}{(a^2+a+1)(b^2+b+1)}\leq \frac{2}{9} $$$$-\frac{37+13\sqrt{13}}{414}\leq \frac{ab+a+b-2}{(a^2+a+4)(b^2+b+4)}\leq \frac{3}{50} $$$$-\frac{5\sqrt 5+9}{22}\leq \frac{ab+a+b-2}{(a^2+a+2)(b^2+b+2)}\leq  \frac{5\sqrt 5-9}{22}$$
This post has been edited 6 times. Last edited by sqing, Yesterday at 3:56 AM

Some Identity that I need help

by ItzsleepyXD, Dec 28, 2024, 3:41 AM

Given $\triangle ABC$ with orthocenter , circumcenter and incenter $H,O,I$ , circum-radius $R$ , in-radius $r$.
Prove that $OH^2 = 2 HI^2 - 4r^2 + R^2$ .

INMO 2022

by Flying-Man, Mar 6, 2022, 8:25 AM

Let $D$ be an interior point on the side $BC$ of an acute-angled triangle $ABC$. Let the circumcircle of triangle $ADB$ intersect $AC$ again at $E(\ne A)$ and the circumcircle of triangle $ADC$ intersect $AB$ again at $F(\ne A)$. Let $AD$, $BE$, and $CF$ intersect the circumcircle of triangle $ABC$ again at $D_1(\ne A)$, $E_1(\ne B)$ and $F_1(\ne C)$, respectively. Let $I$ and $I_1$ be the incentres of triangles $DEF$ and $D_1E_1F_1$, respectively. Prove that $E,F, I, I_1$ are concyclic.

circumcenter of BJK lies on line AC, median, right angle, circumcircle related

by parmenides51, Jun 18, 2020, 9:20 PM

Let $BM$ be a median in an acute-angled triangle $ABC$. A point $K$ is chosen on the line through $C$ tangent to the circumcircle of $\vartriangle BMC$ so that $\angle KBC = 90^\circ$. The segments $AK$ and $BM$ meet at $J$. Prove that the circumcenter of $\triangle BJK$ lies on the line $AC$.

Aleksandr Kuznetsov, Russia
This post has been edited 3 times. Last edited by parmenides51, Oct 9, 2020, 12:31 PM
Reason: source edit

APMO 2017: (ADZ) passes through M

by BartSimpsons, May 14, 2017, 3:20 PM

Let $ABC$ be a triangle with $AB < AC$. Let $D$ be the intersection point of the internal bisector of angle $BAC$ and the circumcircle of $ABC$. Let $Z$ be the intersection point of the perpendicular bisector of $AC$ with the external bisector of angle $\angle{BAC}$. Prove that the midpoint of the segment $AB$ lies on the circumcircle of triangle $ADZ$.

Olimpiada de Matemáticas, Nicaragua
This post has been edited 1 time. Last edited by MellowMelon, May 17, 2017, 5:50 PM
Reason: add proposer

IMO 2011 Problem 6

by liberator, Jul 21, 2015, 4:57 PM

Problem: Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $\ell$ be a tangent line to $\Gamma$, and let $\ell_a, \ell_b$ and $\ell_c$ be the lines obtained by reflecting $\ell$ in the lines $BC$, $CA$ and $AB$, respectively. Show that the circumcircle of the triangle determined by the lines $\ell_a, \ell_b$ and $\ell_c$ is tangent to the circle $\Gamma$.

Proposed by Japan

My solution
This post has been edited 2 times. Last edited by liberator, Jul 22, 2015, 1:35 PM

It's not just good - it's revolutionary!

avatar

liberator
Shouts
Submit
  • whoa....

    by bachkieu, Jan 31, 2025, 1:40 AM

  • hello...

    by ethan2011, Jul 4, 2024, 5:13 PM

  • 2024 shout ftw

    by Shreyasharma, Feb 19, 2024, 10:28 PM

  • time flies

    by Asynchrone, Dec 13, 2023, 9:29 PM

  • first 2023 shout :D

    by gracemoon124, Aug 2, 2023, 4:58 AM

  • offline.................

    by 799786, Dec 27, 2021, 7:08 AM

  • YOU SHALL NOT PASS! - liberator

    by OlympusHero, Aug 16, 2021, 4:10 AM

  • Nice Blog!

    by geometry6, Jul 31, 2021, 1:39 PM

  • First shout out in 2021 :D

    by Aimingformygoal, May 31, 2021, 4:23 PM

  • indeed a pr0 blog :surf:

    by Kanep, Dec 3, 2020, 10:46 PM

  • pr0 blog !!

    by Hamroldt, Dec 2, 2020, 8:32 AM

  • niice bloog!

    by Eliot, Oct 1, 2020, 3:27 PM

  • nice blog :o

    by fukano_2, Aug 8, 2020, 7:49 AM

  • Nice blog :)

    by Feridimo, Mar 31, 2020, 9:29 AM

  • Very nice blog !

    by Kamran011, Oct 31, 2019, 5:48 PM

56 shouts
Tags
About Owner
  • Posts: 95
  • Joined: May 28, 2014
Blog Stats
  • Blog created: Aug 13, 2014
  • Total entries: 46
  • Total visits: 37996
  • Total comments: 43
Search Blog
a