# 1950 AHSME Problems/Problem 15

## Problem

The real roots of $x^2+4$ are: $\textbf{(A)}\ (x^{2}+2)(x^{2}+2)\qquad\textbf{(B)}\ (x^{2}+2)(x^{2}-2)\qquad\textbf{(C)}\ x^{2}(x^{2}+4)\qquad\\ \textbf{(D)}\ (x^{2}-2x+2)(x^{2}+2x+2)\qquad\textbf{(E)}\ \text{Non-existent}$

## Solution

### Solution 1

This looks similar to a difference of squares, so we can write it as $(x+2i)(x-2i).$ Neither of these factors are real.

Also, looking at the answer choices, there is no way multiplying two polynomials of degree $2$ will result in a polynomial of degree $2$ as well. Therefore the real factors are $\boxed{\mathrm{(E)}\text{ Non-existent.}}$

### Solution 2

Let's try to find all real roots of $x^2+4=0$. If there was a real root (call it $r$), then it would satisfy $r^2+4=0$. Rearranging gives that $r^2=-4$. Therefore a real root $r$ of $x^2+4=0$ would satisfy $r^2<0$. However, the Trivial Inequality states that no real $r$ satisfies $r^2<0$, which must mean that there are no real roots $r$; they are $\boxed{\mathrm{(E)}\text{ Non-existent.}}$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 