# 1953 AHSME Problems/Problem 27

## Problem

The radius of the first circle is $1$ inch, that of the second $\frac{1}{2}$ inch, that of the third $\frac{1}{4}$ inch and so on indefinitely. The sum of the areas of the circles is: $\textbf{(A)}\ \frac{3\pi}{4} \qquad \textbf{(B)}\ 1.3\pi \qquad \textbf{(C)}\ 2\pi \qquad \textbf{(D)}\ \frac{4\pi}{3}\qquad \textbf{(E)}\ \text{none of these}$

## Solution

Note the areas of these circles is $1\pi$, $\frac{\pi}{4}$, $\frac{\pi}{16}, \dots$. The sum of these areas will thus be $\pi\left(1+\frac{1}{4}+\frac{1}{16}+\dots\right)$. We use the formula for an infinite geometric series to get the sum of the areas will be $\pi\left(\frac{1}{1-\frac{1}{4}}\right)$, or $\frac{4\pi}{3}$. $\boxed{D}$

## See Also

 1953 AHSC (Problems • Answer Key • Resources) Preceded byProblem 26 Followed byProblem 28 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS