1955 AHSME Problems/Problem 12

Problem

The solution of $\sqrt{5x-1}+\sqrt{x-1}=2$ is:

$\textbf{(A)}\ x=2,x=1\qquad\textbf{(B)}\ x=\frac{2}{3}\qquad\textbf{(C)}\ x=2\qquad\textbf{(D)}\ x=1\qquad\textbf{(E)}\ x=0$

Solution

First, square both sides. This gives us

\[\sqrt{5x-1}^2+2\cdot\sqrt{5x-1}\cdot\sqrt{x-1}+\sqrt{x-1}^2=4 \Longrightarrow 5x-1+2\cdot\sqrt{(5x-1)\cdot(x-1)}+x-1=4 \Longrightarrow 2\cdot\sqrt{5x^2-6x+1}+6x-2=4\] Then, adding $-6x$ to both sides gives us

\[2\cdot\sqrt{5x^2-6x+1}+6x-2-6x=4-6x \Longrightarrow 2\cdot\sqrt{5x^2-6x+1}-2 =-6x+4\] After that, adding $2$ to both sides will give us

\[2\cdot\sqrt{5x^2-6x+1}-2+2=-6x+4+2 \Longrightarrow 2\cdot\sqrt{5x^2-6x+1}=-6x+6\] Next, we divide both sides by 2 which gives us

\[\frac{2\cdot\sqrt{5x^2-6x+1}-2+2}{2}=\frac{-6x+4+2}{2} \Longrightarrow \sqrt{5x^2-6x+1}=-3x+3\] Finally, solving the equation, we get

\[5x^2-6x+1=(-3x+3)^2 \Longrightarrow 5x^2-6x+1=9x^2-18x+9\] \[\Longrightarrow 5x^2-6x+1-(9x^2-18x+9)=9x^2-18x+9-(9x^2-18x+9)\] \[\Longrightarrow -4x^2+12x-8=0 \Longrightarrow -4(x-1)(x-2)=0\] \[\Longrightarrow x-1=0 \text{or}\ x-2=0 \Longrightarrow x=1 \text{or}\ x=2\] Plugging 1 and 2 into the original equation, $\sqrt{5x-1}+\sqrt{x-1}=2$, we see that when $x=1$

\[\sqrt{5x-1}+\sqrt{x-1}=2 \Longrightarrow \sqrt{5\cdot1-1}+\sqrt{1-1}=2 \Longrightarrow \sqrt4+\sqrt0=2 \Longrightarrow 2+0=2 \Longrightarrow 2=2\] the equation is true. On the other hand, we note that when $x=2$

\[\sqrt{5x-1}+\sqrt{x-1}=2 \Longrightarrow \sqrt{5\cdot2-1}+\sqrt{2-1}=2 \Longrightarrow \sqrt9+\sqrt1=2 \Longrightarrow 3+1=2 \Longrightarrow 4=0\] the equation is false. Therefore the answer is $\boxed{{\textbf{(D) }} x=1}$.

Solution by awesomechoco

See Also

1955 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS