1957 AHSME Problems/Problem 32

Problem

The largest of the following integers which divides each of the numbers of the sequence $1^5 - 1,\, 2^5 - 2,\, 3^5 - 3,\, \cdots, n^5 - n, \cdots$ is:

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 60 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 120\qquad \textbf{(E)}\ 30$

Solution

To begin, we look for a maximum value that this common divisor could have by looking at the smallest terms. $1^5-1=0$, but this gives us no information because all positive integers divide zero. However, $2^5-2=30$, so our answer cannot be greater than $30$ (because $30$ divided by an integer larger than $30$ is never an integer). This fact eliminates options (B) and (D).

Now, we will factorize $n^5-n$ to discover some properties: n5n=n(n41)=n(n21)(n2+1)=n(n1)(n+1)(n2+1) One of $n$ and $n-1$ must be even, so $2$ divides $n^5-n$ for all $n$. Likewise, one of $n-1$, $n$, and $n+1$ must be divisible by $3$, so $3$ must divide $n^5-n$ as well. In the case of $5$, there are, in total, three cases:

Case 1: $5$ divides either $n-1$, $n$, or $n+1$. Then, $5$ clearly must divide $n^5-n$.

Case 2: $5$ divides $n+2$. In this case, $n+2 \equiv 0$ $\mod$ $5$, so $n \equiv 3 \mod 5$. Then, $n^2+1 \equiv 10 \equiv 0 \mod 5$, so $n^2-1$ (and, consequently, $n^5-n$) is divisible by $5$.

Case 3: $5$ divides $n+3$. In this case, $n+3 \equiv 0 \mod 5$, so $n \equiv 2 \mod 5$. Thus, $n^2+1 \equiv 5 \equiv 0 \mod 5$, so $n^2-1$ (and, consequently, $n^5-n$) is divisible by $5$.

Thus, 5 divides $n^5-n$ for all $n$.

Because $2$, $3$, and $5$ all divide $n^5-n$ and are relatively prime, $2 \cdot 3 \cdot 5 = 30$ also divides $n^5-n$. Thus, because $30$ is the largest of our remaining choices, we choose answer $\boxed{\textbf{(E) }30}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png