1959 AHSME Problems/Problem 12

Problem

By adding the same constant to $20,50,100$ a geometric progression results. The common ratio is: $\textbf{(A)}\ \frac53 \qquad\textbf{(B)}\ \frac43\qquad\textbf{(C)}\ \frac32\qquad\textbf{(D)}\ \frac12\qquad\textbf{(E)}\ \frac{1}3$

Solution

Suppose that the constant is $x$. Then $20+x, 50+x, 100+x$ is a geometric progression, so $(20+x)(100+x) = (50+x)^2$. Expanding, we get $2000 + 120x + x^2 = 2500 + 100x + x^2$; therefore, $20x = 500$, so $x=25$.

Now we can calculate our geometric progression to be $20+25, 50+25, 100+25 = 45, 75, 125$. Therefore, the common ratio is $\frac{125}{75} = \frac{75}{45} = \boxed{\frac{5}{3}}$, and our answer is $\boxed{\textbf{(A)}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png