1962 IMO Problems

Day I

Problem 1

Find the smallest natural number $n$ which has the following properties:

(a) Its decimal representation has 6 as the last digit.

(b) If the last digit 6 is erased and placed in front of the remaining digits, the resulting number is four times as large as the original number $n$.


Problem 2

Determine all real numbers $x$ which satisfy the inequality:



Problem 3

Consider the cube $ABCDA'B'C'D'$($ABCD$ and $A'B'C'D'$ are the upper and lower bases, respectively, and edges $AA'$, $BB'$, $CC'$, $DD'$ are parallel). The point $X$ moves at constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimeter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpoints of the segments $XY$.


Day II

Problem 4

Solve the equation $cos^2{x}+cos^2{2x}+cos^2{3x}=1$.


Problem 5

On the circle $K$ there are given three distinct points $A,B,C$. Construct (using only straightedge and compass) a fourth point $D$ on $K$ such that a circle can be inscribed in the quadrilateral thus obtained.


Problem 6

Consider an isosceles triangle. Let $r$ be the radius of its circumscribed circle and $\rho$ the radius of its inscribed circle. Prove that the distance $d$ between the centers of these two circles is



Problem 7

The tetrahedron $SABC$ has the following property: there exist five spheres, each tangent to the edges $SA, SB, SC, BC, CA, AB$, or to their extensions.

(a) Prove that the tetrahedron $SABC$ is regular.

(b) Prove conversely that for every regular tetrahedron five such spheres exist.



1962 IMO (Problems) • Resources
Preceded by
1961 IMO
1 2 3 4 5 6 Followed by
1963 IMO
All IMO Problems and Solutions
Invalid username
Login to AoPS