1968 AHSME Problems/Problem 12

Problem

A circle passes through the vertices of a triangle with side-lengths $7\tfrac{1}{2},10,12\tfrac{1}{2}.$ The radius of the circle is:

$\text{(A) } \frac{15}{4}\quad \text{(B) } 5\quad \text{(C) } \frac{25}{4}\quad \text{(D) } \frac{35}{4}\quad \text{(E) } \frac{15\sqrt{2}}{2}$

Solution

The triangle that goes through all the vertices of the triangle is the circumcircle of the triangle. $(7\frac{1}{2})^{2}+10^{2}=(12\frac{1}{2})^{2}$, so the triangle is a right triangle.The radius of a circumcircle of a right triangle is half the hypotenuse. $\frac{1}{2}\cdot \frac{25}{2}=\frac{25}{4}\implies$ $\fbox{C}$

See also

1968 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png