# 1972 USAMO Problems/Problem 3

## Problem

A random number selector can only select one of the nine integers 1, 2, ..., 9, and it makes these selections with equal probability. Determine the probability that after $n$ selections ( $n>1$), the product of the $n$ numbers selected will be divisible by 10.

## Solution

For the product to be divisible by 10, there must be a factor of 2 and a factor of 5 in there.

The probability that there is no 5 is $\left( \frac{8}{9}\right)^n$.

The probability that there is no 2 is $\left( \frac{5}{9}\right)^n$.

The probability that there is neither a 2 nor 5 is $\left( \frac{4}{9}\right)^n$, which is included in both previous cases.

The only possibility left is getting a 2 and a 5, making the product divisible by 10. By complementarity and principle of inclusion-exclusion, the probability of that is $1- \left( \left( \frac{8}{9}\right)^n + \left( \frac{5}{9}\right)^n - \left( \frac{4}{9}\right)^n\right)=\boxed{1-(8/9)^n-(5/9)^n+(4/9)^n}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 