# 1975 AHSME Problems/Problem 28

## Problem 28

In $\triangle ABC$ shown in the adjoining figure, $M$ is the midpoint of side $BC, AB=12$ and $AC=16$. Points $E$ and $F$ are taken on $AC$ and $AB$, respectively, and lines $EF$ and $AM$ intersect at $G$. If $AE=2AF$ then $\frac{EG}{GF}$ equals $[asy] draw((0,0)--(12,0)--(14,7.75)--(0,0)); draw((0,0)--(13,3.875)); draw((5,0)--(8.75,4.84)); label("A", (0,0), S); label("B", (12,0), S); label("C", (14,7.75), E); label("E", (8.75,4.84), N); label("F", (5,0), S); label("M", (13,3.875), E); label("G", (7,1)); [/asy]$ $\textbf{(A)}\ \frac{3}{2} \qquad \textbf{(B)}\ \frac{4}{3} \qquad \textbf{(C)}\ \frac{5}{4} \qquad \textbf{(D)}\ \frac{6}{5}\\ \qquad \textbf{(E)}\ \text{not enough information to solve the problem}$

## Solution

Here, we use Mass Points. Let $AF = x$. We then have $AE = 2x$, $EC = 16-2x$, and $FB = 12 - x$ Let $B$ have a mass of $2$. Since $M$ is the midpoint, $C$ also has a mass of $2$. Looking at segment $AB$, we have $$2 \cdot (12-x) = \text{m}A_{AB} \cdot x$$ So $$\text{m}A_{AB} = \frac{24-2x}{x}$$ Looking at segment $AC$,we have $$2 \cdot (16-2x) = \text{m}A_{AC} \cdot 2x$$ So $$\text{m}A_{AC} = \frac{16-2x}{x}$$ From this, we get $$\text{m}E = \frac{16-2x}{x} + 2 \Rrightarrow \text{m}E = \frac{16}{x}$$ and $$\text{m}F = \frac{24-2x}{x} + 2 \Rrightarrow \text{m}F = \frac{24}{x}$$ We want the value of $\frac{EG}{GF}$. This can be written as $$\frac{EG}{GF} = \frac{\text{m}F}{\text{m}E}$$ Thus $$\frac{\text{m}F}{\text{m}E} = \frac {\frac{24}{x}}{\frac{16}{x}} = \frac{3}{2}$$ $\boxed{A}$

~JustinLee2017

## See Also

 1975 AHSME (Problems • Answer Key • Resources) Preceded byProblem 27 Followed byProblem 29 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS