# 1979 AHSME Problems/Problem 28

## Problem 28 $[asy] import cse5; pathpen=black; pointpen=black; dotfactor=3; pair A=(1,2),B=(2,0),C=(0,0); D(CR(A,1.5)); D(CR(B,1.5)); D(CR(C,1.5)); D(MP("A",A)); D(MP("B",B)); D(MP("C",C)); pair[] BB,CC; CC=IPs(CR(A,1.5),CR(B,1.5)); BB=IPs(CR(A,1.5),CR(C,1.5)); D(BB--CC); MP("B'",BB,NW);MP("C'",CC,NE); //Credit to TheMaskedMagician for the diagram[/asy]$

Circles with centers $A ,~ B$, and $C$ each have radius $r$, where $1 < r < 2$. The distance between each pair of centers is $2$. If $B'$ is the point of intersection of circle $A$ and circle $C$ which is outside circle $B$, and if $C'$ is the point of intersection of circle $A$ and circle $B$ which is outside circle $C$, then length $B'C'$ equals $\textbf{(A) }3r-2\qquad \textbf{(B) }r^2\qquad \textbf{(C) }r+\sqrt{3(r-1)}\qquad\\ \textbf{(D) }1+\sqrt{3(r^2-1)}\qquad \textbf{(E) }\text{none of these}$

## Solution

The circles can be described in the cartesian plane as being centered at $(-1,0),(1,0)$ and $(0,\sqrt{3})$ with radius $r$ by the equations $x^2+(y-\sqrt{3})^2=r^2$ $(x+1)^2+y^2=r^2$ $(x-1)^2+y^2=r^2$.

Solving the first 2 equations gives $x=1-\sqrt{3}\cdot y$ which when substituted back in gives $y=\frac{\sqrt{3}\pm \sqrt{r^2-1}}{2}$.

The larger root $y=\frac{\sqrt{3}+\sqrt{r^2-1}}{2}$ is the point B' described in the question. This root corresponds to $x=-\frac{1+\sqrt{3(r^2-1)}}{2}$.

By symmetry across the y-axis the length of the line segment $B'C'$ is $1+\sqrt{3(r^2-1)}$ which is $\boxed{D}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 