# 1986 AHSME Problems/Problem 27

## Problem

In the adjoining figure, $AB$ is a diameter of the circle, $CD$ is a chord parallel to $AB$, and $AC$ intersects $BD$ at $E$, with $\angle AED = \alpha$. The ratio of the area of $\triangle CDE$ to that of $\triangle ABE$ is $[asy] defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(-1,0), B=(1,0), E=(0,-.4), C=(.6,-.8), D=(-.6,-.8), E=(0,-.8/(1.6)); draw(unitcircle); draw(A--B--D--C--A); draw(Arc(E,.2,155,205)); label("A",A,W); label("B",B,C); label("C",C,C); label("D",D,W); label("\alpha",E-(.2,0),W); label("E",E,N); [/asy]$ $\textbf{(A)}\ \cos\ \alpha\qquad \textbf{(B)}\ \sin\ \alpha\qquad \textbf{(C)}\ \cos^2\alpha\qquad \textbf{(D)}\ \sin^2\alpha\qquad \textbf{(E)}\ 1-\sin\ \alpha$

## Solution $ABE$ and $DCE$ are similar isosceles triangles. It remains to find the square of the ratio of their sides. Draw in $AD$. Because $AB$ is a diameter, $\angle ADB=\angle ADE=90^{\circ}$. Thus, $$\frac{DE}{AE}=\cos\alpha$$ So $$\frac{DE^2}{AE^2}=\cos^2\alpha$$ The answer is thus $\fbox{(C)}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 