1998 IMO Problems/Problem 1

In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and the opposite sides AB and DC are not parallel. Suppose that the point P , where the perpendicular bisectors of AB and DC meet, is inside ABCD. Prove that ABCD is a cyclic quadrilateral if and only if the triangles ABP and CDP have equal areas.

Invalid username
Login to AoPS