2000 AIME I Problems/Problem 6
Contents
Problem
For how many ordered pairs of integers is it true that and that the arithmetic mean of and is exactly more than the geometric mean of and ?
Solution
Solution 1
Because , we only consider .
For simplicity, we can count how many valid pairs of that satisfy our equation.
The maximum that can be is because must be an integer (this is because , an integer). Then , and we continue this downward until , in which case . The number of pairs of , and so is then .
Solution 2
Let = and =
Then
This makes counting a lot easier since now we just have to find all pairs that differ by 2.
Because , then we can use all positive integers less than 1000 for and .
Without loss of generality, let's say .
We can count even and odd pairs separately to make things easier*:
Odd:
Even:
This makes 499 odd pairs and 498 even pairs, for a total of pairs.
Note: We are counting the pairs for the values of and , which, when squared, translate to the pairs of we are trying to find.
Solution 3
Since the arithmetic mean is 2 more than the geometric mean, . We can multiply by 2 to get . Subtracting 4 and squaring gives
Notice that , so the problem asks for solutions of Since the left hand side is a perfect square, and 16 is a perfect square, must also be a perfect square. Since , must be from to , giving at most 999 options for .
However if , you get , which has solutions and . Both of those solutions are not less than , so cannot be equal to 1. If , you get , which has 2 solutions, , and . 16 is not less than 4, and cannot be 0, so cannot be 4. However, for all other , you get exactly 1 solution for , and that gives a total of pairs.
- asbodke
Solution 4 (similar to solution 3)
Rearranging our conditions to
Thus,
Now, let Plugging this back into our expression, we get
There, a unique value of is formed for every value of . However, we must have
and
Therefore, there are only pairs of
Solution by Williamgolly
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.