# 2001 AMC 8 Problems/Problem 16

## Problem

A square piece of paper, 4 inches on a side, is folded in half vertically. Both layers are then cut in half parallel to the fold. Three new rectangles are formed, a large one and two small ones. What is the ratio of the perimeter of one of the small rectangles to the perimeter of the large rectangle? $[asy] draw((0,8)--(0,0)--(4,0)--(4,8)--(0,8)--(3.5,8.5)--(3.5,8)); draw((2,-1)--(2,9),dashed); [/asy]$ $\text{(A)}\ \dfrac{1}{3} \qquad \text{(B)}\ \dfrac{1}{2} \qquad \text{(C)}\ \dfrac{3}{4} \qquad \text{(D)}\ \dfrac{4}{5} \qquad \text{(E)}\ \dfrac{5}{6}$

## Solution

The smaller rectangles each have the same height as the original square, but have $\frac{1}{4}$ the length, since the paper is folded in half and then cut in half the same way. The larger rectangle has the same height as the original square but has $\frac{1}{2}$ the length, since the paper is cut in half after the fold but the fold retains both sides of the larger rectangle. Therefore, the smaller rectangles have dimensions $4 \times 1$ and the larger rectangle has dimensions $4 \times 2$. The ratio of their perimeters is $\frac{2(4+1)}{2(4+2)}=\frac{5}{6}, \boxed{\text{E}}$

## See Also

 2001 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 15 Followed byProblem 17 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS