# 2003 AMC 12A Problems/Problem 14

## Problem

Points $K, L, M,$ and $N$ lie in the plane of the square $ABCD$ such that $AKB$, $BLC$, $CMD$, and $DNA$ are equilateral triangles. If $ABCD$ has an area of 16, find the area of $KLMN$. $[asy] unitsize(2cm); defaultpen(fontsize(8)+linewidth(0.8)); pair A=(-0.5,0.5), B=(0.5,0.5), C=(0.5,-0.5), D=(-0.5,-0.5); pair K=(0,1.366), L=(1.366,0), M=(0,-1.366), N=(-1.366,0); draw(A--N--K--A--B--K--L--B--C--L--M--C--D--M--N--D--A); label("A",A,SE); label("B",B,SW); label("C",C,NW); label("D",D,NE); label("K",K,NNW); label("L",L,E); label("M",M,S); label("N",N,W); [/asy]$ $\textrm{(A)}\ 32\qquad\textrm{(B)}\ 16+16\sqrt{3}\qquad\textrm{(C)}\ 48\qquad\textrm{(D)}\ 32+16\sqrt{3}\qquad\textrm{(E)}\ 64$

## Solution

### Solution 1

Since the area of square ABCD is 16, the side length must be 4. Thus, the side length of triangle AKB is 4, and the height of AKB, and thus DMC, is $2\sqrt{3}$.

The diagonal of the square KNML will then be $4+4\sqrt{3}$. From here there are 2 ways to proceed:

First: Since the diagonal is $4+4\sqrt{3}$, the side length is $\frac{4+4\sqrt{3}}{\sqrt{2}}$, and the area is thus $\frac{16+48+32\sqrt{3}}{2}=\boxed{\mathrm{(D)}\ 32+16\sqrt{3}}$.

Second: Since a square is a rhombus, the area of the square is $\frac{d_1d_2}{2}$, where $d_1$ and $d_2$ are the diagonals of the rhombus. Since the diagonal is $4+4\sqrt{3}$, the area is $\frac{(4+4\sqrt{3})^2}{2}=\boxed{\mathrm{(D)}\ 32+16\sqrt{3}}$.

### Solution 2

Because $ABCD$ has area $16$, its side length is simply $\sqrt{16}\implies 4$.

Angle chasing, we find that the angle of $KBL=360-(90+2(60))=360-(210)=150$.

We also know that $KB=4, BL=4$.

Using Law of Cosines, we find that side $(KL)^2=16+16-2(16)cos{150}\implies (KL)^2=32+\frac{32\sqrt{3}}{2}\implies (KL)^2=32+16\sqrt{3}$.

However, the area of $KLMN$ is simply $(KL)^2$, hence the answer is $32+16\sqrt{3}\implies {D}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 