# 2003 AMC 12B Problems/Problem 7

## Problem

Penniless Pete's piggy bank has no pennies in it, but it has 100 coins, all nickels,dimes, and quarters, whose total value is \$8.35. It does not necessarily contain coins of all three types. What is the difference between the largest and smallest number of dimes that could be in the bank? $\text {(A) } 0 \qquad \text {(B) } 13 \qquad \text {(C) } 37 \qquad \text {(D) } 64 \qquad \text {(E) } 83$

## Solution

Where $a,b,c$ is the number of nickels, dimes, and quarters, respectively, we can set up two equations: $$(1)\ 5a+10b+25c=835\ \ \ \ (2)\ a+b+c=100$$

Eliminate $a$ by subtracting $(2)$ from $(1)/5$ to get $b+4c=67$. Of the integer solutions $(b,c)$ to this equation, the number of dimes $b$ is least in $(3,16)$ and greatest in $(67,0)$, yielding a difference of $67-3=\boxed{\textbf{(D)}\ 64}$.

## See Also

 2003 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 6 Followed byProblem 8 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS