2006 Cyprus MO/Lyceum/Problem 15

Problem

The expression $\frac{1}{2+\sqrt7} + \frac{1}{\sqrt7+\sqrt{10}}+ \frac{1}{\sqrt{10}+\sqrt{13}} + \frac{1}{\sqrt{13}+4}$ equals

$\mathrm{(A)}\ \frac{3}{4}\qquad\mathrm{(B)}\ \frac{3}{2}\qquad\mathrm{(C)}\ \frac{2}{5}\qquad\mathrm{(D)}\ \frac{1}{2}\qquad\mathrm{(E)}\ \frac{2}{3}$

Solution

Multiply all of the terms by their complex conjugates to simplify:

\[\frac{1}{\sqrt{7} + \sqrt{4}} \cdot \left(\frac{\sqrt{7}-\sqrt{4}}{\sqrt{7}-\sqrt{4}}\right) + \ldots + \frac{1}{\sqrt{16} + \sqrt{13}} \cdot \left(\frac{\sqrt{16}-\sqrt{13}}{\sqrt{16}-\sqrt{13}}\right)\] \[= \frac{\sqrt{7} - \sqrt{4}}{3} + \frac{\sqrt{10} - \sqrt{7}}{3} + \frac{\sqrt{13} - \sqrt{10}}{3} + \frac{\sqrt{16} - \sqrt{13}}{3}\]

This telescopes to $\frac{\sqrt{16} - \sqrt{4}}{3} = \frac{2}{3} \Longrightarrow \mathrm{(E)}$.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30