2010 AIME I Problems/Problem 2

Problem

Find the remainder when $9 \times 99 \times 999 \times \cdots \times \underbrace{99\cdots9}_{\text{999 9's}}$ is divided by $1000$.

Solution

Note that $999\equiv 9999\equiv\dots \equiv\underbrace{99\cdots9}_{\text{999 9's}}\equiv -1 \pmod{1000}$ (see modular arithmetic). That is a total of $999 - 3 + 1 = 997$ integers, so all those integers multiplied out are congruent to $- 1\pmod{1000}$. Thus, the entire expression is congruent to $- 1\times9\times99 = - 891\equiv\boxed{109}\pmod{1000}$.

Solution 2

The expression also equals $(10-1)(100-1)\dots({10^{999}}-1)$. To find its modular 1,000, remove all terms from 1,000 and after. Then the expression becomes $(10-1)(100-1)(-1) \pmod{1000} \equiv -891 \pmod{1000} \equiv \boxed{109}\pmod{1000}$

By maxamc

Video Solution by OmegaLearn

https://youtu.be/orrw4VydBTk?t=140

~ pi_is_3.14

Video Solution

https://www.youtube.com/watch?v=-GD-wvY1ADE&t=78s

Video Solution by WhyMath

https://youtu.be/EMTcFZB9KvA

~savannahsolver

See Also

2010 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png