# 2010 AMC 10A Problems/Problem 2

## Problem 2

Four identical squares and one rectangle are placed together to form one large square as shown. The length of the rectangle is how many times as large as its width? $[asy] unitsize(8mm); defaultpen(linewidth(.8pt)); draw((0,0)--(4,0)--(4,4)--(0,4)--cycle); draw((0,3)--(0,4)--(1,4)--(1,3)--cycle); draw((1,3)--(1,4)--(2,4)--(2,3)--cycle); draw((2,3)--(2,4)--(3,4)--(3,3)--cycle); draw((3,3)--(3,4)--(4,4)--(4,3)--cycle); [/asy]$ $\mathrm{(A)}\ \dfrac{5}{4} \qquad \mathrm{(B)}\ \dfrac{4}{3} \qquad \mathrm{(C)}\ \dfrac{3}{2} \qquad \mathrm{(D)}\ 2 \qquad \mathrm{(E)}\ 3$

## Solution 1

Let the length of the small square be $x$, intuitively, the length of the big square is $4x$. It can be seen that the width of the rectangle is $3x$. Thus, the length of the rectangle is $4x/3x = 4/3$ times large as the width. The answer is $\boxed{B}$.

## Solution 2

We can say the smaller squares area is $x^2$, so $\dfrac{1}{4}$ of the area of the larger square is $4x^2$ so the large squares are is $16x^2$, so each side is $4x$ so length is $4x$ and the width is $4x-x=3x$ so $\dfrac{4x}{3x}=\dfrac{4}{3}$

## See also

 2010 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 1 Followed byProblem 3 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS