2010 AMC 10A Problems/Problem 9

Problem

A palindrome, such as $83438$, is a number that remains the same when its digits are reversed. The numbers $x$ and $x+32$ are three-digit and four-digit palindromes, respectively. What is the sum of the digits of $x$?

$\textbf{(A)}\ 20 \qquad \textbf{(B)}\ 21 \qquad \textbf{(C)}\ 22 \qquad \textbf{(D)}\ 23 \qquad \textbf{(E)}\ 24$

Solution

$x$ is at most $999$, so $x+32$ is at most $1031$. The minimum value of $x+32$ is $1000$. However, the only palindrome between $1000$ and $1032$ is $1001$, which means that $x+32$ must be $1001$.

It follows that $x$ is $969$, so the sum of the digits is $\boxed{\textbf{(E)}\ 24}$.

See also

2010 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS