# 2010 AMC 8 Problems/Problem 16

## Problem 16

A square and a circle have the same area. What is the ratio of the side length of the square to the radius of the circle? $\textbf{(A)}\ \frac{\sqrt{\pi}}{2}\qquad\textbf{(B)}\ \sqrt{\pi}\qquad\textbf{(C)}\ \pi\qquad\textbf{(D)}\ 2\pi\qquad\textbf{(E)}\ \pi^{2}$

## Solution

Let the side length of the square be $s$, and let the radius of the circle be $r$. Thus we have $s^2=r^2\pi$. Dividing each side by $r^2$, we get $\frac{s^2}{r^2}=\pi$. Since $\left(\frac{s}{r}\right)^2=\frac{s^2}{r^2}$, we have $\frac{s}{r}=\sqrt{\pi}\Rightarrow \boxed{\textbf{(B)}\ \sqrt{\pi}}$

## See Also

 2010 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 15 Followed byProblem 17 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS