2010 AMC 8 Problems/Problem 24

Problem

What is the correct ordering of the three numbers, $10^8$, $5^{12}$, and $2^{24}$?

$\textbf{(A)}\ 2^{24}<10^8<5^{12}\\ \textbf{(B)}\ 2^{24}<5^{12}<10^8 \\ \textbf{(C)}\ 5^{12}<2^{24}<10^8 \\ \textbf{(D)}\ 10^8<5^{12}<2^{24} \\ \textbf{(E)}\ 10^8<2^{24}<5^{12}$

Solution 1

Use brute force. $10^8=100,000,000$, $5^{12}=244,140,625$, and $2^{24}=16,777,216$. Therefore, $\boxed{\text{(A)}2^{24}<10^8<5^{12}}$ is the answer. (Not recommended for the contest and will take forever)

Solution 2

Since all of the exponents are multiples of four, we can simplify the problem by taking the fourth root of each number. Evaluating we get $10^2=100$, $5^3=125$, and $2^6=64$. Since $64<100<125$, it follows that $\boxed{\textbf{(A)}\ 2^{24}<10^8<5^{12}}$ is the correct answer.

Solution 3

First, let us make all exponents equal to 8. Then, it will be easy to order the numbers without doing any computations. $10^8$ is as fine as it is. We can rewrite $2^{24}$ as $(2^3)^8=8^8$. Then we can rewrite $5^{12}$ as $(5^{\frac{3}{2}})^8=(\sqrt{125})^8)$. We take the eighth root of all of these to get ${10, 8, \sqrt{125}}$. Obviously, $8<10<\sqrt{125}$, so the answer is $\boxed{\textbf{(A)}\ 2^{24}<10^8<5^{12}}$. Solution by Math

Solution 4

We know that $10^{8}=({5}\cdot{2})^{8}=5^{8}\cdot2^{8}$. We also know that $5^{12}=5^{(8+4)}=5^{8}\cdot5^{4}$. If we remove the common factor of $5^{8}$ from both expressions, we are left with $2^{8}$, which equals 256, and $5^{4}$, which equals 625. So we know that $5^{12}$ is bigger than $10^{8}$. This leaves us with only 2 options, A or E. Now we need to figure out which is bigger, $10^{8}$ or $2^{24}$. To do this, we rewrite $2^{24}$ as $(2^{8})^{3}=(2^{3})^{8}=(8)^{8}$, which is clearly less than $10^{8}$. Therefore, $\boxed{\textbf{(A)}\ 2^{24}<10^8<5^{12}}$ is the correct answer.

By naman14

Video Solution by WhyMath

https://youtu.be/EfCyJF1FEO ~someone