2011 AIME I Problems/Problem 4
Contents
[hide]Problem
In triangle , , and . The angle bisector of angle intersects at point , and the angle bisector of angle intersects at point . Let and be the feet of the perpendiculars from to and , respectively. Find .
Solution 1
Extend and such that they intersect line at points and , respectively. Since is the angle bisector of angle and is perpendicular to , must be an isoceles triangle, so , and is the midpoint of . For the same reason, , and is the midpoint of . Hence . Since so .
Solution 2
Let be the incenter of . Since lies on and , and , so . This means that is a cyclic quadrilateral. By the Law of Sines, , where is the radius of the circumcircle of . Since , we have that . Letting be the point of contact of the incircle of with side , we have . Thus, .
Solution 3 (Bash)
Project onto and as and . and are both in-radii of so we get right triangles with legs (the in-radius length) and . Since is the hypotenuse for the 4 triangles ( and ), are con-cyclic on a circle we shall denote as which is also the circumcircle of and . To find , we can use the Law of Cosines on where is the center of . Now, the circumradius can be found with Pythagorean Theorem with or : . To find , we can use the formula and by Heron's, . To find , we can find since . . Thus, and since , we have . Plugging this into our Law of Cosines (LoC) formula gives . To find , we use LoC on . Our formula now becomes . After simplifying, we get .
--lucasxia01
Solution 4
Because , is cyclic.
Applying Ptolemy's theorem on CMIN:
by sine angle addition formula.
.
Let be where the incircle touches , then . , for a final answer of .
Note: This is similar to Solution 2 after the first four lines
Solution 5 (Trig Bash)
Applying Ptolemy's Theorem on the cyclic quadrilateral , we find that
.
and by the Exterior Angle Theorem, so from properties of sine and cosine, we can find that
Plugging in the values and simplifying results in by the angle-addition identity .
Before we continue, we would like to simplify the value in the sine function. We see that . Using the fact that results in
How do we simplify ? Well, we can perform the Law of Sines on triangle . This results in:
The value of is by the Exterior Angle Theorem on , so the value of is equivalent to the value of by a similar argument as above. Then rearranging yields .
Going back to the previous formula and substituting values yields:
.
Finally, using the formulae and (where is half the perimeter of the triangle), we reach our final value:
Video Solution
https://www.youtube.com/watch?v=yIUBhWiJ4Dk ~Mathematical Dexterity
Video Solution
https://www.youtube.com/watch?v=vkniYGN45F4
~Shreyas S
Alternate Solution: https://www.youtube.com/watch?v=L2OzYI0OJsc&t=12s
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.