# 2013 AMC 10B Problems/Problem 18

## Problem

The number $2013$ has the property that its units digit is the sum of its other digits, that is $2+0+1=3$. How many integers less than $2013$ but greater than $1000$ have this property? $\textbf{(A)}\ 33\qquad\textbf{(B)}\ 34\qquad\textbf{(C)}\ 45\qquad\textbf{(D)}\ 46\qquad\textbf{(E)}\ 58$

## Solution

We take cases on the thousands digit, which must be either $1$ or $2$: If the number is of the form $\overline{1bcd},$ where $b, c, d$ are digits, then we must have $d = 1 + b + c.$ Since $d \le 9,$ we must have $b + c \le 9 - 1 = 8.$ By casework on the value of $b$, we find that there are $1 + 2 + \dots + 9 = 45$ possible pairs $(b, c)$, and each pair uniquely determines the value of $d$, so we get $45$ numbers with the given property.

If the number is of the form $\overline{2bcd},$ then it must be one of the numbers $2000, 2001, \dots, 2012.$ Checking all these numbers, we find that only $2002$ has the given property. Therefore, the number of numbers with the property is $45 + 1 = \boxed{46}.$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 