# 2016 USAMO Problems/Problem 3

## Problem

Let $\triangle ABC$ be an acute triangle, and let $I_B, I_C,$ and $O$ denote its $B$-excenter, $C$-excenter, and circumcenter, respectively. Points $E$ and $Y$ are selected on $\overline{AC}$ such that $\angle ABY = \angle CBY$ and $\overline{BE}\perp\overline{AC}.$ Similarly, points $F$ and $Z$ are selected on $\overline{AB}$ such that $\angle ACZ = \angle BCZ$ and $\overline{CF}\perp\overline{AB}.$

Lines $I_B F$ and $I_C E$ meet at $P.$ Prove that $\overline{PO}$ and $\overline{YZ}$ are perpendicular.

## Solution

This problem can be proved in the following two steps.

1. Let $I_A$ be the $A$-excenter, then $I_A,O,$ and $P$ are colinear. This can be proved by the Trigonometric Form of Ceva's Theorem for $\triangle I_AI_BI_C.$

2. Show that $I_AY^2-I_AZ^2=OY^2-OZ^2,$ which implies $\overline{OI_A}\perp\overline{YZ}.$ This can be proved by multiple applications of the Pythagorean Thm.

## Solution 2

We find point $T$ on line $YZ,$ we prove that $TY \perp OI_A$ and state that $P$ is the point $X(24)$ from ENCYCLOPEDIA OF TRIANGLE, therefore $P \in OI_A.$

Let $\omega$ be circumcircle of $\triangle ABC$ centered at $O.$ Let $Y_1,$ and $Z_1$ be crosspoints of $\omega$ and $BY,$ and $CZ,$ respectively. Let $T$ be crosspoint of $YZ$ and $Y_1 Z_1.$ In accordance the Pascal theorem for pentagon $AZ_1BCY_1,$ $AT$ is tangent to $\omega$ at $A.$

Let $I_A, I_B, I_C$ be $A, B,$ and $C$-excenters of $\triangle ABC.$ Denote $$a = BC, b = AC, c = AB, 2\alpha = \angle CAB, 2\beta = \angle ABC, 2\gamma = \angle ACB,$$ $$\psi = 90^\circ – \gamma + \beta, X = AI_A \cap \omega, X_1 = BC \cap AI_A,$$ $$I = BI_B \cap CI_C, U= YZ \cap AI_A, W = Y_1Z_1 \cap AI_A,$$ $V$ is the foot ot perpendicular from $O$ to $AI_A.$

$I$ is ortocenter of $\triangle I_A I_B I_C$ and incenter of $\triangle ABC.$

$\omega$ is the Nine–point circle of $\triangle I_A I_B I_C.$

$Y_1$ is the midpoint of $II_B, Z_1$ is the midpoint of $II_C$ in accordance with property of Nine–point circle $\implies$ $$Y_1Z_1 || I_B AI_C || VO, IW = AW \implies TW \perp AI.$$ $$\angle AXC = 180 ^\circ – 2\gamma – \alpha = 90 ^\circ – \gamma + \beta = \psi.$$ $$\angle TAI = \angle VOA = 2\beta + \alpha = 90 ^\circ – \gamma + \beta = \psi.$$ $$I_A X_1 = IX_1 = BX_1 = 2R \sin \alpha \implies$$ $$\cot \angle OI_A A = \frac {VI_A}{VO} = \frac {R \sin \psi + 2R \sin \alpha}{R \cos \psi} = \tan \psi + \frac{2 \sin\alpha}{\cos \psi}.$$ $$CX = \frac {ab}{b+c} \implies \frac {AI}{IX}= \frac {AC}{CX}= \frac {b+c}{a} \implies AI = AX \frac {b+c}{a+b+c},$$ $$AW = \frac {AI}{2}, UW = AU – AW,$$ In $\triangle ABC$ segment $YZ$ cross segment $AX \implies \frac {AU}{UX} = \frac {m + nk}{k+1},$ where $n = \frac {a}{b}, m = \frac{a}{c}, k=\frac {b}{c},$ $$\frac {AU}{UX} = \frac{2a}{b+c} \implies AU = AX \cdot \frac {b+c}{2a +b +c}.$$ $$\frac {AU – AW}{AW} = \frac {b+c} {2a + b + c}.$$

$$\cot \angle UTW = \frac {TW}{UW} = \frac {AW \cdot \tan \psi}{AU – AW} = \tan \psi \cdot \frac {2a +b+c}{b+c} =$$ $$=\tan \psi \cdot \frac {2a}{b+c} + \tan \psi = \frac {2 \sin \alpha}{\sin \psi} \tan \psi + \tan \psi = \tan \psi + \frac{2 \sin\alpha}{\cos \psi}$$ $$\implies \angle UTW = \angle OI_AA .$$ $$TW \perp AI_A \implies TYZ \perp OI_A.$$

Let $\triangle II_B I_C$ be the base triangle with orthocenter $I_A,$ center of Nine-points circle $O \implies OI_A$ be the Euler line of $\triangle II_B I_C.$

$\triangle ABC$ is orthic triangle of $\triangle II_B I_C,$

$\triangle DEF$ is orthic-of-orthic triangle.

$P$ is perspector of base triangle and orthic-of-orthic triangle.

Therefore $P$ is point $X(24)$ of ENCYCLOPEDIA OF TRIANGLE CENTERS which lies on Euler line of the base triangle. [[1]]

Claim $$\frac {AU}{UX} = \frac {m + nk}{k + 1}.$$ Proof $$\frac {[AYZ]}{[ABC]} = \frac {AZ \cdot AY}{AB \cdot AC} = \frac {1}{(n + 1) \cdot (m+1)},$$ $$\frac {[BXZ]}{[ABC]} = \frac {BZ \cdot BX}{AB \cdot BC} = \frac {n}{(n + 1) \cdot (k+1)},$$ $$\frac {[CXY]}{[ABC]} = \frac {CY \cdot CX}{AC \cdot BC} = \frac {mk}{(m + 1) \cdot (k+1)},$$ $$\frac {[XYZ]}{[ABC]} = 1 - \frac {[AYZ]}{[ABC]} – \frac {[BXZ]}{[ABC]} – \frac {[CXY]}{[ABC]} = \frac {m+nk}{(m + 1) \cdot (k+1)\cdot (n+1)},$$ $$\frac {AU}{UX} = \frac {[AYZ]}{[XYZ]} = \frac {m + nk}{k + 1}.$$