# 2017 AMC 12A Problems/Problem 13

## Problem

Driving at a constant speed, Sharon usually takes $180$ minutes to drive from her house to her mother's house. One day Sharon begins the drive at her usual speed, but after driving $\frac{1}{3}$ of the way, she hits a bad snowstorm and reduces her speed by $20$ miles per hour. This time the trip takes her a total of $276$ minutes. How many miles is the drive from Sharon's house to her mother's house? $\textbf{(A)}\ 132 \qquad\textbf{(B)}\ 135 \qquad\textbf{(C)}\ 138 \qquad\textbf{(D)}\ 141 \qquad\textbf{(E)}\ 144$

## Solution

Let total distance be $x$. Her speed in miles per minute is $\tfrac{x}{180}$. Then, the distance that she drove before hitting the snowstorm is $\tfrac{x}{3}$. Her speed in snowstorm is reduced $20$ miles per hour, or $\tfrac{1}{3}$ miles per minute. Knowing it took her $276$ minutes in total, we create equation: $$\text{Time before Storm}\, + \, \text{Time after Storm} = \text{Total Time} \Longrightarrow$$ $$\frac{\text{Distance before Storm}}{\text{Speed before Storm}} + \frac{\text{Distance in Storm}}{\text{Speed in Storm}} = \text{Total Time} \Longrightarrow \frac{\tfrac{x}{3}}{\tfrac{x}{180}} + \frac{\tfrac{2x}{3}}{\tfrac{x}{180} - \tfrac{1}{3}} = 276$$

Solving equation, we get $x=135$ $\Longrightarrow \boxed{B}$.

## Video Solution

~savannahsolver

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 