2017 JBMO Problems/Problem 3
Problem
Let be an acute triangle such that ,with circumcircle and circumcenter . Let be the midpoint of and be a point on such that . let be a point such that is a parallelogram and a point on the same side of as such that and . Let the line intersect at and let the circumcircle of intersect at point . Prove that the point and are collinear .
Solution
See also
2017 JBMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 | ||
All JBMO Problems and Solutions |