# 2020 AMC 10A Problems/Problem 2

## Problem

The numbers $3, 5, 7, a,$ and $b$ have an average (arithmetic mean) of $15$. What is the average of $a$ and $b$?

$\textbf{(A) } 0 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 30 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 60$

## Solution

The arithmetic mean of the numbers $3, 5, 7, a,$ and $b$ is equal to $\frac{3+5+7+a+b}{5}=\frac{15+a+b}{5}=15$. Solving for $a+b$, we get $a+b=60$. Dividing by $2$ to find the average of the two numbers $a$ and $b$ gives $\frac{60}{2}=\boxed{\textbf{(C) }30}$.

## Solution (two solutions - balancing and summing)

We know the average is 15. 3, 5, and 7 are, respectively, 12, 10, and 8 below the average. So far then we are -12 - 10 - 8 or 30 below the average. We have to make this up with a and b so on average each is 30/2 = 15 above the average. The average is 15 so each is on average 15+15 = 30, or answer C.

Incidentally we can immediately rule out answers A and B as being too small - with these we'd never catch up to get our average of 15. An alternative solution is that to get an average of 15 we need a sum of 15*5 = 75. We have 3, 5, and 7 which adds up to 15, so a and b must make up the remaining 75-15 = 60. 60/2 = 30 so the average of a and b is 30.

       ~Dilip


## Video Solution 1

Education, The Study of Everything

~IceMatrix

~bobthefam

## Video Solution 4

~savannahsolver

 2020 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 1 Followed byProblem 3 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions