2023 IMO Problems/Problem 5

Problem

Let $n$ be a positive integer. A Japanese triangle consists of $1 + 2 + \dots + n$ circles arranged in an equilateral triangular shape such that for each $i = 1$, $2$, $\dots$, $n$, the $i^{th}$ row contains exactly $i$ circles, exactly one of which is coloured red. A ninja path in a Japanese triangle is a sequence of $n$ circles obtained by starting in the top row, then repeatedly going from a circle to one of the two circles immediately below it and finishing in the bottom row. Here is an example of a Japanese triangle with $n = 6$, along with a ninja path in that triangle containing two red circles.

[asy] // credit to vEnhance for the diagram (which was better than my original asy): size(4cm);   pair X = dir(240); pair Y = dir(0);   path c = scale(0.5)*unitcircle;   int[] t = {0,0,2,2,3,0};   for (int i=0; i<=5; ++i) {     for (int j=0; j<=i; ++j) {       filldraw(shift(i*X+j*Y)*c, (t[i]==j) ? lightred : white);       draw(shift(i*X+j*Y)*c);     }   }   draw((0,0)--(X+Y)--(2*X+Y)--(3*X+2*Y)--(4*X+2*Y)--(5*X+2*Y),linewidth(1.5));   path q = (3,-3sqrt(3))--(-3,-3sqrt(3));   draw(q,Arrows(TeXHead, 1));   label("$n = 6$", q, S); label("$n = 6$", q, S); [/asy]

In terms of $n$, find the greatest $k$ such that in each Japanese triangle there is a ninja path containing at least $k$ red circles.

Solution

https://www.youtube.com/watch?v=jZNIpapyGJQ [Video contains solutions to all day 2 problems]

See Also

2023 IMO (Problems) • Resources
Preceded by
Problem 4
1 2 3 4 5 6 Followed by
Problem 6
All IMO Problems and Solutions