Search results

  • ...</math> options, as does the second. Then there are <math>9 + 7 \cdot 81 = 576</math> of these numbers. Thus, there are <math>9 + 90 + 252 + 576 = 927</math> integers less than <math>10,000</math> that have at most two d
    5 KB (709 words) - 16:40, 24 September 2024
  • ...53 554 555 556 558 559 560 561 562 564 565 566 567 568 570 572 573 574 575 576 578 579 580 581 582 583 584 585 586 588 589 590 591 592 594 595 596 597 598
    6 KB (350 words) - 11:58, 26 September 2023
  • ...\qquad\textbf{(B) } 144\pi \qquad\textbf{(C) } 288\pi \qquad\textbf{(D) } 576\pi \qquad\textbf{(E) } 1024\pi</math>
    12 KB (1,784 words) - 15:49, 1 April 2021
  • ...xpression look like the half angle identity, and the fact that <math>\sqrt{576}</math> is an integer doesn't hurt. Now, we have that <math>d=24 \sin \frac
    6 KB (906 words) - 12:23, 5 September 2021
  • ...c^2)</math>. Plugging in for <math>a,b</math> gives us <math>F=(1746:1746:-576)</math>. Thus, by the area formula, we have<cmath>\frac{[AFB]}{[ABC]}=
    7 KB (1,170 words) - 22:15, 11 July 2024
  • ...\left(\frac{24 \cdot 7} {25}\right)^2}=\frac{24} {25}\sqrt{25^2-7^2}=\frac{576} {25}.</math> <math>MN=\frac{576} {25}-\frac{25} {2}=\frac{527} {50}.</math>
    5 KB (772 words) - 18:47, 1 August 2023
  • ...easily see that the difference between two consecutive square after <math>576</math> is greater than or equal to <math>49</math>,
    8 KB (1,255 words) - 21:56, 23 October 2024
  • ...cdot\left(\frac{13\sqrt{2}}{2}\right) \cdot 12 \cdot\frac{7\sqrt{2}}{26} = 576 + 338 - 4 \cdot 12 \cdot 7 = \boxed{578}.</math>
    6 KB (933 words) - 23:05, 7 July 2023
  • ...h>. Since none of the digits can be 0, there are <math>9 \times 8 \times 8=576</math> possibilites if both numbers are three digits. ...sibilities. Thus, thus total possibilities for <math>(a,b)</math> is <math>576+144+18=738</math>.
    7 KB (1,114 words) - 02:41, 12 September 2021
  • ...2^{15} \cdot 3^{17} \cdot 7</math> has <math>16 \cdot 18 \cdot 2 = \boxed{576}</math> factors.
    4 KB (685 words) - 13:39, 7 October 2017
  • ...math>x^2+12x+100=676-52x+x^2</math> which nicely rearranges into <math>64x=576\rightarrow{x=9}</math>. Hence, AB is 9 so our answer is <math>\boxed{\text{
    2 KB (378 words) - 20:38, 19 July 2023
  • ...into the equation,<cmath>-32(18-a-b)+62(a+b)=-200</cmath>Expanding,<cmath>-576+32a+32b+62a+62b=-200 \implies 94a+94b=376</cmath>So, <math>a+b=4</math> and
    4 KB (704 words) - 18:25, 28 March 2024
  • ...a + 4)(10a + 6)(10a + 7)(10a + 8)(10a + 9) \equiv (-1)(-4)(-9)(-16) \equiv 576 \equiv 1 \mod 25.</cmath> Using this process, we can essentially remove all
    10 KB (1,553 words) - 19:12, 14 October 2024
  • <cmath>441, 484, 529,576,625,676,729,784,841,900,961</cmath>We see that <math>484</math> and <math>7
    3 KB (547 words) - 14:39, 1 December 2024
  • <cmath>576\sin x = 24\cot^2x</cmath> So, <math>24\cot^2x=576\sin x=576\cdot\frac{1}{3}=\boxed{192}</math>.
    2 KB (330 words) - 19:47, 10 December 2023
  • ...<cmath>2^{20} = \left(2^{10}\right)^2 = \left(1024\right)^2 \equiv 24^2 = 576 \not\equiv 1 \pmod {125}.</cmath> Therefore, we conclude that <math>d \ne 2 ...032, 064, 128, 256, 512, 024, 048, 096, 192, 384, 768, 536, 072, 144, 288, 576, 152, 304, 608,</math> <math>216, 432, 864, 728, 456, 912, 824, 648, 296, 5
    12 KB (1,922 words) - 12:38, 28 August 2024
  • ...0^2 \to a^2 = x^2 - 400</math>, and <math>x^2 = b^2 + 24^2 \to b^2 = x^2 - 576</math> <math>144 = (x^2 - 400) + (x^2 - 576) - 2 \sqrt{x^2 - 400} \sqrt{x^2 - 576} \left( \cos \angle EPO \cos \angle FPO - \sin \angle EPO \sin \angle FPO \
    13 KB (1,989 words) - 12:10, 8 December 2024
  • ...B)}\ -24 \qquad\textbf{(C)}\ -9 \qquad\textbf{(D)}\ 24 \qquad\textbf{(E)}\ 576</math>
    13 KB (2,090 words) - 17:05, 7 January 2021
  • ...B)}\ -24 \qquad\textbf{(C)}\ -9 \qquad\textbf{(D)}\ 24 \qquad\textbf{(E)}\ 576</math>
    4 KB (678 words) - 21:36, 19 July 2024
  • 68 576 580 [17 - 144 - 145] 168 576 600 [7 - 24 - 25]
    55 KB (3,566 words) - 10:28, 29 September 2024

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)