Search results
Create the page "V v" on this wiki! See also the search results found.
Page title matches
- 458 bytes (44 words) - 16:51, 14 December 2023
Page text matches
- <math>\delta x'(t)=v(t)</math> <math>v'(t)=a(t)</math>9 KB (1,355 words) - 06:29, 29 September 2021
- <math>V = \frac{\sqrt{z}}{12}</math> Then, <math>w=9, x=18, y=14, z=4, </math> so <math>V=\frac16</math>, which is correct.5 KB (783 words) - 17:58, 1 January 2025
- Case V) <math>a+b=5c\Rightarrow (5a-1)(5b-1)=126</math> for which there are 2 solu2 KB (332 words) - 08:37, 30 December 2021
- ...ly if there exists a scalar <math>t</math> such that <math>\overrightarrow{v} = t \overrightarrow{w}</math>, or if one of the vectors is zero. This form ...{R} </math> be an [[inner product]]. Then for any <math> \mathbf{a,b} \in V </math>,13 KB (2,048 words) - 14:28, 22 February 2024
- ...math>, which is less than <math>2 \cdot 99999</math>. Therefore, <math>u + v</math> must be equal to <math>99999</math>. ...eft is which number in each pair goes to <math>u</math> and which to <math>v</math>; there are <math>2</math> ways we can divvy a pair up, which means t13 KB (2,018 words) - 14:31, 10 January 2025
- ...system at all, used certain letters to represent certain values (e.g. I=1, V=5, X=10, L=50, C=100, D=500, M=1000). Imagine how difficult it would be to4 KB (547 words) - 16:23, 30 December 2020
- ...\,\,y\,\,z\,\,...)</math>. The magnitude of a vector, denoted <math>\|\vec{v}\|</math>, is found simply by ...d by them, <math>\|\vec{v}+\vec{w}\|^2=\|\vec{v}\|^2+\|\vec{w}\|^2+2\|\vec{v}\|\|\vec{w}\|\cos\theta</math>.11 KB (1,875 words) - 14:35, 7 January 2025
- ...aQ</math> and <math>|qx-(\tilde\beta P-\tilde\alpha v)|\le\tilde\alpha|ux+v|+\tilde\beta|Qx-P|\le ...\le \frac {6a^2}q</math>. Thus, setting <math>p=\tilde\beta P-\tilde\alpha v</math>, we get <math>\left|x-\frac pq\right|<\frac {6a^2}{q^2}</math>.7 KB (1,290 words) - 11:18, 30 May 2019
- '''Hilbert symbol''': let <math>v \in \mathbb{P} \cup \{ 0 , \infty \}</math> and <math>a,b \in \mathbb{Q}_v^ is the "Hilbert symbol of <math>a,b</math> in respect to <math>v</math>" (nontrivial means here that not all numbers are <math>0</math>).8 KB (1,401 words) - 16:49, 10 January 2025
- ...and let <math>I</math> be a [[prime ideal]] of <math>R</math>. Then <math>V(I)=\{p\in\mathbb{A}^n\mid f(p)=0\mathrm{\ for\ all\ } f\in I\}</math> is ca2 KB (361 words) - 00:59, 24 January 2020
- ...of [[vertex|vertices]], [[edge]]s, and [[face]]s, respectively. Then <math>V-E+F=2</math>.1,006 bytes (134 words) - 13:15, 6 March 2022
- ! scope="row" | '''Mock AMC V'''51 KB (6,175 words) - 20:41, 27 November 2024
- Let <math>U=2\cdot 2004^{2005}</math>, <math>V=2004^{2005}</math>, <math>W=2003\cdot 2004^{2004}</math>, <math>X=2\cdot 20 <math>\text{(A) } U-V \qquad \text{(B) } V-W \qquad \text{(C) } W-X \qquad \text{(D) } X-Y \qquad \text{(E) } Y-Z \qqu13 KB (1,953 words) - 23:31, 25 January 2023
- ...ngles of a pentagon. Suppose that <math>v < w < x < y < z</math> and <math>v, w, x, y, </math> and <math>z</math> form an arithmetic sequence. Find the10 KB (1,547 words) - 03:20, 9 October 2022
- Our original solid has volume equal to <math>V = \frac13 \pi r^2 h = \frac13 \pi 3^2\cdot 4 = 12 \pi</math> and has [[surf Our original solid <math>V</math> has [[surface area]] <math>A_v = \pi r^2 + \pi r \ell</math>, where5 KB (839 words) - 21:12, 16 December 2015
- ...>P^{}_{}</math> pentagonal faces meet. What is the value of <math>100P+10T+V\,</math>?8 KB (1,275 words) - 05:55, 2 September 2021
- .... Let <math>m/n</math> be the probability that <math>\sqrt{2+\sqrt{3}}\le |v+w|</math>, where <math>m</math> and <math>n</math> are relatively prime pos7 KB (1,098 words) - 16:08, 25 June 2020
- ...he area of pentagon <math>ABCDE</math> is <math>451</math>. Find <math>u + v</math>.7 KB (1,204 words) - 02:40, 4 January 2023
- ...ine{UV}</math> with <math>U</math> on <math>\overline{PQ}</math> and <math>V</math> on <math>\overline{QR}</math> such that <math>\overline{UV}</math> i8 KB (1,282 words) - 20:12, 19 February 2019
- ...Using the formula for the volume of a regular tetrahedron, which is <math>V = \frac{\sqrt{2}S^3}{12}</math>, where S is the side length of the tetrahed <math>V = \frac{1}{2} \cdot \frac{\sqrt{2} \cdot (12\sqrt{2})^3}{12} = \boxed{288}<6 KB (971 words) - 14:35, 27 May 2024