Difference between revisions of "Incircle"

m (Formulas)
m (Added that the center of incircle in a triangle is the incenter.)
Line 2: Line 2:
  
  
An '''incircle''' of a [[convex]] [[polygon]] is a [[circle]] which is inside the figure and [[tangent line | tangent]] to each side.  Every [[triangle]] and [[regular polygon]] has a unique incircle, but in general polygons with 4 or more sides (such as non-[[square (geometry) | square]] [[rectangle]]s) do not have an incircle. A quadrilateral that does have an incircle is called a [[Tangential Quadrilateral]].  
+
An '''incircle''' of a [[convex]] [[polygon]] is a [[circle]] which is inside the figure and [[tangent line | tangent]] to each side.  Every [[triangle]] and [[regular polygon]] has a unique incircle, but in general polygons with 4 or more sides (such as non-[[square (geometry) | square]] [[rectangle]]s) do not have an incircle. A quadrilateral that does have an incircle is called a [[Tangential Quadrilateral]]. For a triangle, the center of the incircle is the [[Incenter]].
  
 
==Formulas==
 
==Formulas==

Revision as of 11:16, 10 February 2019

This article is a stub. Help us out by expanding it.


An incircle of a convex polygon is a circle which is inside the figure and tangent to each side. Every triangle and regular polygon has a unique incircle, but in general polygons with 4 or more sides (such as non- square rectangles) do not have an incircle. A quadrilateral that does have an incircle is called a Tangential Quadrilateral. For a triangle, the center of the incircle is the Incenter.

Formulas

  • The radius of an incircle of a triangle (the inradius) with sides $a,b,c$ and area $A$ is $\frac{2A}{a+b+c}$
  • The radius of an incircle of a right triangle (the inradius) with legs $a,b$ and hypotenuse $c$ is $r=\frac{ab}{a+b+c}=\frac{a+b-c}{2}$.
  • For any polygon with an incircle, $A=sr$, where $A$ is the area, $s$ is the semiperimeter, and $r$ is the inradius.
  • The formula for the semiperimeter is $s=\frac{a+b+c}{2}$.
  • And area of the triangle by Heron is $A^2=s(s-a)(s-b)(s-c)$.

See also