Difference between revisions of "2019 AMC 10A Problems/Problem 15"
Sevenoptimus (talk | contribs) m (Improved formatting and clarity) |
The jake314 (talk | contribs) |
||
Line 24: | Line 24: | ||
By plugging in 2019, we thus find <math>b_{2019} = 2018 \cdot \frac{7}{3}-2017 = \frac{8075}{3}</math>. Since the numerator and the denominator are relatively prime, the answer is <math>\boxed{\textbf{(E) } 8078}</math>. | By plugging in 2019, we thus find <math>b_{2019} = 2018 \cdot \frac{7}{3}-2017 = \frac{8075}{3}</math>. Since the numerator and the denominator are relatively prime, the answer is <math>\boxed{\textbf{(E) } 8078}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | It seems reasonable to transform the equation into something else. Let <math>a_{n}=x</math>, <math>a_{n-1}=y</math>, and <math>a_{n-2}=z</math>. Therefore, we have <cmath>x=\frac{zy}{2z-y}</cmath> | ||
+ | <cmath>2xz-xy=zy</cmath> | ||
+ | <cmath>2xz=y(x+z)</cmath> | ||
+ | <cmath>y=\frac{2xz}{x+z}</cmath> | ||
+ | Thus, <math>y</math> is the harmonic mean of <math>x</math> and <math>z</math>. This implies <math>a_{n}</math> is a harmonic sequence or equivalently <math>b_{n}=\frac{1}{a_{n}}</math> is arithmetic. Now, we have <math>b_{1}=1</math>, <math>b_{2}=\frac{7}{3}</math>, <math>b_{3}=\frac{11}{3}</math>, and so on. Since the common difference is <math>\frac{4}{3}</math>, we can express <math>b_{n}</math> explicitly as <math>b_{n}=\frac{4}{3}(n-1)+1</math>. This gives <math>b_{2019}=\frac{4}{3}(2019-1)+1=\frac{8075}{3}</math> which implies <math>a_{2019}=\frac{3}{8075}=\frac{p}{q}</math>. <math>p+q=\boxed{\textbf{(E) } 8078}</math> | ||
==See Also== | ==See Also== |
Revision as of 09:01, 19 March 2019
- The following problem is from both the 2019 AMC 10A #15 and 2019 AMC 12A #9, so both problems redirect to this page.
Contents
[hide]Problem
A sequence of numbers is defined recursively by , , and for all Then can be written as , where and are relatively prime positive integers. What is
Solution 1
Using the recursive formula, we find , , and so on. It appears that , for all . Setting , we find , so the answer is .
To prove this formula, we use induction. We are given that and , which satisfy our formula. Now assume the formula holds true for all for some positive integer . By our assumption, and . Using the recursive formula, so our induction is complete.
Solution 2
Since we are interested in finding the sum of the numerator and the denominator, consider the sequence defined by .
We have , so in other words, .
By recursively following this pattern, we can see that .
By plugging in 2019, we thus find . Since the numerator and the denominator are relatively prime, the answer is .
Solution 3
It seems reasonable to transform the equation into something else. Let , , and . Therefore, we have Thus, is the harmonic mean of and . This implies is a harmonic sequence or equivalently is arithmetic. Now, we have , , , and so on. Since the common difference is , we can express explicitly as . This gives which implies .
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.