Difference between revisions of "2014 AMC 8 Problems/Problem 21"
(→See Also) |
(→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
The sum of a number's digits <math>\mod{3}</math> is congruent to the number <math>\pmod{3}</math>. <math>74A52B1 \mod{3}</math> must be congruent to 0, since it is divisible by 3. Therefore, <math>7+4+A+5+2+B+1 \mod{3}</math> is also congruent to 0. <math>7+4+5+2+1 \equiv 1 \pmod{3}</math>, so <math>A+B\equiv 2 \pmod{3}</math>. As we know, <math>326AB4C\equiv 0 \pmod{3}</math>, so <math>3+2+6+A+B+4+C =15+A+B+C\equiv 0 \pmod{3}</math>, and therefore <math>A+B+C\equiv 0 \pmod{3}</math>. We can substitute 2 for <math>A+B</math>, so <math>2+C\equiv 0 \pmod{3}</math>, and therefore <math>C\equiv 1\pmod{3}</math>. This means that C can be 1, 4, or 7, but the only one of those that is an answer choice is <math>\boxed{\textbf{(A) }1}</math>. | The sum of a number's digits <math>\mod{3}</math> is congruent to the number <math>\pmod{3}</math>. <math>74A52B1 \mod{3}</math> must be congruent to 0, since it is divisible by 3. Therefore, <math>7+4+A+5+2+B+1 \mod{3}</math> is also congruent to 0. <math>7+4+5+2+1 \equiv 1 \pmod{3}</math>, so <math>A+B\equiv 2 \pmod{3}</math>. As we know, <math>326AB4C\equiv 0 \pmod{3}</math>, so <math>3+2+6+A+B+4+C =15+A+B+C\equiv 0 \pmod{3}</math>, and therefore <math>A+B+C\equiv 0 \pmod{3}</math>. We can substitute 2 for <math>A+B</math>, so <math>2+C\equiv 0 \pmod{3}</math>, and therefore <math>C\equiv 1\pmod{3}</math>. This means that C can be 1, 4, or 7, but the only one of those that is an answer choice is <math>\boxed{\textbf{(A) }1}</math>. | ||
+ | |||
+ | ==Solution== | ||
==See Also== | ==See Also== |
Revision as of 18:29, 29 July 2019
Contents
[hide]Problem
The -digit numbers and are each multiples of . Which of the following could be the value of ?
Solution
The sum of a number's digits is congruent to the number . must be congruent to 0, since it is divisible by 3. Therefore, is also congruent to 0. , so . As we know, , so , and therefore . We can substitute 2 for , so , and therefore . This means that C can be 1, 4, or 7, but the only one of those that is an answer choice is .
Solution
See Also
2014 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
Another solution is using the divisbility rule of 3. Just add the digits of each number together.