PREPARE FOR THE AMC 10
Join outstanding instructors and top-scoring students in our online AMC 10 Problem Series course.
CHECK SCHEDULE

Difference between revisions of "2020 AMC 10A Problems"

(Created page with "These problems will not be available until the 2020 AMC 10A contest is released on Thursday, January 30, 2020.")
 
Line 1: Line 1:
These problems will not be available until the 2020 AMC 10A contest is released on Thursday, January 30, 2020.
+
{{AMC10 Problems|year=2020|ab=A}}
 +
 
 +
==Problem 1==
 +
 
 +
What value of <math>x</math> satisfies
 +
 
 +
<cmath>x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?</cmath>
 +
<math>\textbf{(A)}\ -\frac{2}{3}\qquad\textbf{(B)}\ \frac{7}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{5}{6}</math>
 +
 
 +
[[2020 AMC 10A Problems/Problem 1|Solution]]
 +
 
 +
==Problem 2==
 +
 
 +
The numbers <math>3, 5, 7, a,</math> and <math>b</math> have an average (arithmetic mean) of <math>15</math>. What is the average of <math>a</math> and <math>b</math>?
 +
 
 +
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 30 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 60</math>
 +
 
 +
[[2020 AMC 10A Problems/Problem 2|Solution]]
 +
 
 +
==Problem 3==
 +
 
 +
Assuming <math>a\neq3</math>, <math>b\neq4</math>, and <math>c\neq5</math>, what is the value in simplest form of the following expression?
 +
<cmath>\frac{a-3}{5-c} \cdot \frac{b-4}{3-a} \cdot \frac{c-5}{4-b}</cmath>
 +
 
 +
<math>\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } \frac{abc}{60} \qquad \textbf{(D) } \frac{1}{abc} - \frac{1}{60} \qquad \textbf{(E) } \frac{1}{60} - \frac{1}{abc}</math>
 +
 
 +
[[2020 AMC 10A Problems/Problem 3|Solution]]
 +
 
 +
==Problem 4==
 +
 
 +
A driver travels for <math>2</math> hours at <math>60</math> miles per hour, during which her car gets <math>30</math> miles per gallon of gasoline. She is paid <math>$0.50</math> per mile, and her only expense is gasoline at <math>$2.00</math> per gallon. What is her net rate of pay, in dollars per hour, after this expense?
 +
 
 +
<math>\textbf{(A) }20 \qquad\textbf{(B) }22 \qquad\textbf{(C) }24 \qquad\textbf{(D) } 25\qquad\textbf{(E) } 26</math>
 +
 
 +
[[2020 AMC 10A Problems/Problem 4|Solution]]
 +
 
 +
==See also==
 +
{{AMC10 box|year=2020|ab=A|before=[[2019 AMC 10B Problems]]|after=[[2020 AMC 10B Problems]]}}
 +
{{MAA Notice}}

Revision as of 21:32, 31 January 2020

2020 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What value of $x$ satisfies

\[x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?\] $\textbf{(A)}\ -\frac{2}{3}\qquad\textbf{(B)}\ \frac{7}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{5}{6}$

Solution

Problem 2

The numbers $3, 5, 7, a,$ and $b$ have an average (arithmetic mean) of $15$. What is the average of $a$ and $b$?

$\textbf{(A) } 0 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 30 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 60$

Solution

Problem 3

Assuming $a\neq3$, $b\neq4$, and $c\neq5$, what is the value in simplest form of the following expression? \[\frac{a-3}{5-c} \cdot \frac{b-4}{3-a} \cdot \frac{c-5}{4-b}\]

$\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } \frac{abc}{60} \qquad \textbf{(D) } \frac{1}{abc} - \frac{1}{60} \qquad \textbf{(E) } \frac{1}{60} - \frac{1}{abc}$

Solution

Problem 4

A driver travels for $2$ hours at $60$ miles per hour, during which her car gets $30$ miles per gallon of gasoline. She is paid $$0.50$ per mile, and her only expense is gasoline at $$2.00$ per gallon. What is her net rate of pay, in dollars per hour, after this expense?

$\textbf{(A) }20 \qquad\textbf{(B) }22 \qquad\textbf{(C) }24 \qquad\textbf{(D) } 25\qquad\textbf{(E) } 26$

Solution

See also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2019 AMC 10B Problems
Followed by
2020 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png