Difference between revisions of "1953 AHSME Problems/Problem 45"

(Created page with "By AM-GM, the answer is <math>\textbf{(E)}\ \frac{a+b}{2}\geq\sqrt{ab}</math>")
 
 
Line 1: Line 1:
By AM-GM, the answer is <math>\textbf{(E)}\ \frac{a+b}{2}\geq\sqrt{ab}</math>
+
==Problem==
 +
 
 +
The lengths of two line segments are <math>a</math> units and <math>b</math> units respectively. Then the correct relation between them is:
 +
 
 +
<math>\textbf{(A)}\ \frac{a+b}{2} > \sqrt{ab} \qquad
 +
\textbf{(B)}\ \frac{a+b}{2} < \sqrt{ab} \qquad
 +
\textbf{(C)}\ \frac{a+b}{2}=\sqrt{ab}\ \textbf{(D)}\ \frac{a+b}{2}\leq\sqrt{ab}\qquad
 +
\textbf{(E)}\ \frac{a+b}{2}\geq\sqrt{ab}  </math>
 +
 
 +
==Solution==
 +
 
 +
Since both lengths are positive, the [[AM-GM Inequality]] is satisfied. The correct relationship between <math>a</math> and <math>b</math> is <math>\boxed{\textbf{(E)}\ \frac{a+b}{2}\geq\sqrt{ab}}</math>.
 +
 
 +
==See Also==
 +
 
 +
{{AHSME 50p box|year=1953|num-b=44|num-a=46}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 22:02, 14 February 2020

Problem

The lengths of two line segments are $a$ units and $b$ units respectively. Then the correct relation between them is:

$\textbf{(A)}\ \frac{a+b}{2} > \sqrt{ab} \qquad \textbf{(B)}\ \frac{a+b}{2} < \sqrt{ab} \qquad \textbf{(C)}\ \frac{a+b}{2}=\sqrt{ab}\\ \textbf{(D)}\ \frac{a+b}{2}\leq\sqrt{ab}\qquad \textbf{(E)}\ \frac{a+b}{2}\geq\sqrt{ab}$

Solution

Since both lengths are positive, the AM-GM Inequality is satisfied. The correct relationship between $a$ and $b$ is $\boxed{\textbf{(E)}\ \frac{a+b}{2}\geq\sqrt{ab}}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 44
Followed by
Problem 46
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png