Difference between revisions of "2005 AIME I Problems/Problem 12"
m |
|||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | {{ | + | It is well-known that <math>\tau(n)</math> is odd if and only if <math>n</math> is a [[perfect square]]. (Otherwise, we can group [[divisor]]s into pairs whose product is <math>n</math>.) Thus, <math>S(n)</math> is odd if and only if there are an odd number of perfect squares less than <math>n</math>. So <math>S(1), S(2)</math> and <math>S(3)</math> are odd, while <math>S(4), S(5), \ldots, S(8)</math> are even, and <math>S(9), \ldots, S(15)</math> are odd, and so on. |
+ | |||
+ | So, for a given <math>n</math>, if we choose the positive integer <math>m</math> such that <math>m^2 \leq n < (m + 1)^2</math> we see that <math>S(n)</math> has the same parity as <math>m</math>. | ||
+ | |||
+ | |||
+ | It follows that the numbers between <math>1^2</math> and <math>2^2</math>, between <math>3^2</math> and <math>4^2</math>, and so on, all the way up to the numbers between <math>43^2</math> and <math>44^2 = 1936</math> have <math>S(n)</math> odd, and that these are the only such numbers less than <math>2007</math> (because <math>45^2 = 2025 > 2007</math>). | ||
+ | |||
+ | Thus <math>a = (2^2 - 1^2) + (4^2 - 3^2) + \ldots + (44^2 - 43^2)</math>. | ||
+ | |||
+ | Similarly, <math>b = (3^2 - 2^2) + (5^2 - 4^2) + \ldots + (45^2 - 44^2) - 17</math>, where the <math>-17</math> accounts for those numbers between <math>2007</math> and <math>2024</math>. | ||
+ | |||
+ | Then <math>|a - b| = |2(2^2 + 4^2 + \ldots + 44^2) - 2(1^2 + 3^2 + 5^2 + \ldots 43^2) + 1^2 - 45^2 + 17|</math>. | ||
+ | |||
+ | |||
+ | We must now apply the formula <math>1^2 + 2^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6}</math>. From this formula, it follows that <math>2^2 + 4^2 + \ldots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3}</math> and so that <math>1^2 + 3^2 + \ldots +(2n + 1)^2 = (1^2 + 2^2 + \ldots +(2n + 1)^2) - (2^2 + 4^2 + \ldots + (2n)^2) = \frac{(2n + 1)(2n + 2)(4n + 3)}{6} - \frac{2n(n + 1)(2n + 1)}{3} = \frac{(n + 1)(2n + 1)(2n + 3)}{3}</math>. Thus, | ||
+ | |||
+ | <math>|a - b| = \left| 2\cdot \frac{44\cdot23\cdot45}{3} - 2\cdot \frac{22 \cdot 43 \cdot 45}{3} - 45^2 + 18\right| = |-27| = 027</math>. | ||
== See also == | == See also == |
Revision as of 12:58, 17 January 2007
Problem
For positive integers let denote the number of positive integer divisors of including 1 and For example, and Define by Let denote the number of positive integers with odd, and let denote the number of positive integers with even. Find
Solution
It is well-known that is odd if and only if is a perfect square. (Otherwise, we can group divisors into pairs whose product is .) Thus, is odd if and only if there are an odd number of perfect squares less than . So and are odd, while are even, and are odd, and so on.
So, for a given , if we choose the positive integer such that we see that has the same parity as .
It follows that the numbers between and , between and , and so on, all the way up to the numbers between and have odd, and that these are the only such numbers less than (because ).
Thus .
Similarly, , where the accounts for those numbers between and .
Then .
We must now apply the formula . From this formula, it follows that and so that . Thus,
.