Difference between revisions of "2010 AIME I Problems/Problem 6"
Tempaccount (talk | contribs) (Remove extra problem section) |
Williamgolly (talk | contribs) (→Solution 4) |
||
Line 56: | Line 56: | ||
=== Solution 4 === | === Solution 4 === | ||
− | Let <math>Q(x) = P(x) - (x^2-2x+2)</math>, then <math>0\le Q(x) \le (x-1)^2</math>. Therefore, <math>0\le Q(x+1) \le x^2 \Rightarrow Q(x) = Ax^2</math> for some real value A. | + | Let <math>Q(x) = P(x) - (x^2-2x+2)</math>, then <math>0\le Q(x) \le (x-1)^2</math>. Therefore, <math>0\le Q(x+1) \le x^2 \Rightarrow Q(x+1) = Ax^2</math> for some real value A. |
<math>Q(11) = 10^2A \Rightarrow P(11)-(11^2-22+2)=100A \Rightarrow 80=100A \Rightarrow A=\frac{4}{5}</math>. | <math>Q(11) = 10^2A \Rightarrow P(11)-(11^2-22+2)=100A \Rightarrow 80=100A \Rightarrow A=\frac{4}{5}</math>. |
Revision as of 19:35, 14 June 2020
Contents
[hide]Problem
Let be a quadratic polynomial with real coefficients satisfying for all real numbers , and suppose . Find .
Solution
Solution 1
Let , . Completing the square, we have , and , so it follows that for all (by the Trivial Inequality).
Also, , so , and obtains its minimum at the point . Then must be of the form for some constant ; substituting yields . Finally, .
Solution 2
It can be seen that the function must be in the form for some real and . This is because the derivative of is , and a global minimum occurs only at (in addition, because of this derivative, the vertex of any quadratic polynomial occurs at ). Substituting and we obtain two equations:
Solving, we get and , so . Therefore, .
Solution 3
Let ; note that . Setting , we find that equality holds when and therefore when ; this is true iff , so .
Let ; clearly , so we can write , where is some linear function. Plug into the given inequality:
, and thus
For all ; note that the inequality signs are flipped if , and that the division is invalid for . However,
,
and thus by the sandwich theorem ; by the definition of a continuous function, . Also, , so ; plugging in and solving, . Thus , and so .
Solution 4
Let , then . Therefore, for some real value A.
.
See Also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.